
C++ Toolkit Book Data Serialization (ASN

15-1

15. Data Serialization (ASN.1, XML) and
Available Serializable Classes
Created: April 1, 2003
Updated: March 22, 2004

The SERIAL API [Library xserial:include | src]
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
A SERIAL library is a generic library to provide data serialization in different formats. See also the
DATATOOL documentation discussion of generating C++ code for serializable objects from the
corresponding ASN.1 definition.

Chapter Outline
The following is an outline of the topics presented in this chapter:

• Test Cases [src/serial/test]

• CObject[IO]Streams

• Format Specific Streams: The CObject[IO]Stream classes

• The CObjectIStream (*) classes

• The CObjectOStream (*) classes

• The CObjectStreamCopier (*) classes

• Type-specific I/O routines

• The Read hook classes

• The Write hook classes

• The Copy hook classes

• The CObjectHookGuard class

• Stack Path Hooks

• The ByteBlock and CharBlock classes

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial

C++ Toolkit Book Data Serialization (ASN

15-2

• NCBI C++ Toolkit Network Service (RPC) Clients

• Introduction and Use

• Implementation Details

• Verification of Class Member Initialization

• Initialization Verification in CSerialObject Classes

• Initialization Verification in Object Streams

• Simplified serialization interface

• The NCBI C++ Toolkit Iterators

• STL generic iterators

• CTypeIterator (*) and CTypeConstIterator (*)

• Class hierarchies, embedded objects, and the NCBI C++ type iterators

• CObjectIterator (*) and CObjectConstIterator (*)

• CStdTypeIterator (*) and CStdTypeConstIterator (*)

• CTypesIterator (*)

• Additional Information

• Processing Serial Data

• Accessing the object header files and serialization libraries

• Reading and writing serial data

• Determining Which Header Files to Include

• Determining Which Libraries to Link To

• User-defined type information

• Introduction

• Installing a GetTypeInfo() function: the BEGIN_/END_macros

• Specifying internal structure and class inheritance: the ADD_ macros

• Runtime Object Type Information

• Introduction

• Motivation

C++ Toolkit Book Data Serialization (ASN

15-3

• Object Information Classes

• CObjectTypeInfo (*)

• CConstObjectInfo (*)

• CObjectInfo (*)

• Usage of object type information

• Choice objects in the NCBI C++ Toolkit

• Introduction

• C++ choice objects

• Traversing a Data Structure

• Locating the Class Definitions

• Accessing and Referencing Data Members

• Traversing a Biostruc

• Iterating Over Containers

Test Cases [src/serial/test]
Available Serializable Classes (as per NCBI ASN.1 Specifications) [Library xobjects: include |

src]
The ASN.1 data objects are automatically built from their corresponding specifications in the

NCBI ASN.1 data model, using DATATOOL to generate all of the required source code . This set
of serializable classes defines an interface to many important sequence and sequence-aware
objects that users may directly employ, or extend with their own code. An Object Manager(see
below) coordinates and simplifies the use of these ASN.1-derived objects.

Serializable Classes

• access [include | src]

• biblio [include | src]

• cdd [include | src]

• cn3d [include | src]

• docsum [include | src]

• entrez2 [include | src]

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/access
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/access
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/biblio
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/biblio
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/cdd
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/cdd
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/cn3d
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/cn3d
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/docsum
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/docsum
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/entrez2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/entrez2

C++ Toolkit Book Data Serialization (ASN

15-4

• featdef [include | src]

• general [include | src]

• id1 [include | src]

• medlars [include | src]

• medline [include | src]

• mim [include | src]

• mla [include | src]

• mmdb1 [include | src]

• mmdb2 [include | src]

• mmdb3 [include | src]

• ncbimime [include | src]

• objprt [include | src]

• proj [include | src]

• pub [include | src]

• pubmed [include | src]

• seq [include | src]

• seqalign [include | src]

• seqblock [include | src]

• seqcode [include | src]

• seqfeat [include | src]

• seqloc [include | src]

• seqres [include | src]

• seqset [include | src]

• submit [include | src]

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/featdef
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/featdef
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/general
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/general
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/id1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/id1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/medlars
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/medlars
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/medline
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/medline
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mim
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mim
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mla
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mla
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb3
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb3
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/ncbimime
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/ncbimime
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/objprt
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/objprt
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/pub
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/pub
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/pubmed
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/pubmed
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqalign
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqalign
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqblock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqblock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqcode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqcode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqfeat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqfeat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqloc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqloc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqres
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqres
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqset
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqset
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/submit
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/submit

C++ Toolkit Book Data Serialization (ASN

15-5

• taxon1 [include | src]

A Test Application Using the Serializable ASN.1 Classes

• asn2asn [src]

CObject[IO]Streams
The following topics are discussed in this section:

• Format Specific Streams: The CObject[IO]Stream classes

• The CObjectIStream (*) classes

• The CObjectOStream (*) classes

• The CObjectStreamCopier (*) classes

• Type-specific I/O routines

• The Read hook classes

• The Write hook classes

• The Copy hook classes

• The CObjectHookGuard class

• Stack Path Hooks

• The ByteBlock and CharBlock classes

• NCBI C++ Toolkit Network Service Clients

• Verification of Class Member Initialization

• Simplified serialization interface

Format Specific Streams: The CObject[IO]Stream classes
The reading and writing of serialized data objects entails satisfying two independent sets of con-
straints and specifications: (1) format-specific parsing and encoding schemes, and (2) object-
specific internal structures and rules of composition. The NCBI C++ Toolkit implements serial IO
processes by combining a set of object stream classes with an independently defined set of data
object classes. These classes are implemented in the serial and objects directories respectively.

The base classes for the object stream classes are CObjectIStream and CObjectOStream.
Each of these base classes has derived subclasses which specialize in different formats, includ-
ing XML, binary ASN.1, and text ASN.1. A simple example program, xml2asn.cpp (see Box 1),
described in Processing serial data, uses these object stream classes in conjunction with a

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/taxon1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/taxon1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/asn2asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html

C++ Toolkit Book Data Serialization (ASN

15-6

CBiostruct object to translate a file from XML encoding to ASN.1 formats. In this chapter, we
consider in more detail the class definitions for object streams, and how the type information
associated with the data is used to implement serial input and output.

Each object stream specializes in a serial data format and a direction (in/out). It is not until the
input and output operators are applied to these streams, in conjunction with a specified serializ-
able object, that the object-specific type information comes into play. For example, if instr is a

CObjectIStream, the statement: instr >> myObject invokes a Read() method associated with the
input stream, whose sole argument is a CObjectInfo for myObject.

Similarly, the output operators, when applied to a CObjectOstream in conjunction with a
serializable object, will invoke a Write() method on the output stream which accesses the object's
type information. The object's type information defines what tag names and value types should be
encountered on the stream, while the CObject[IO]Stream subclasses specialize the data serial-
ization format.

The input and output operators (<< and >>) are declared in serial/serial.hpp header.

The CObjectIStream (%20) classes
CObjectIStream is a virtual base class for the CObjectIStreamXml, CObjectIStreamAsn, and
CObjectIStreamAsnBinary classes. As such, it has no public constructors, and its user interface
includes the following methods:

• Open()

• Close()

• GetDataFormat()

• ReadFileHeader()

• Read()

• ReadObject()

• ReadSeparateObject()

• Skip()

• SkipObject()

There are several Open() methods; most of these are static class methods that return a
pointer to a newly created CObjectIStream. Typically, these methods are used with an
auto_ptr, as in:
auto_ptr<CObjectIStream> xml_in(CObjectIStream::Open(filename, eSerial_Xml));

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/serial.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamAsn.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamAsnBinary.html

C++ Toolkit Book Data Serialization (ASN

15-7

Here, an XML format is specified by the enumerated value eSerial_Xml, defined in

ESerialDataFormat. Because these methods are static, they can be used to create a new
instance of a CObjectIStream subclass, and open it with one statement. In this example, a
CObjectIStreamXml is created and opened on the file filename.

An additional non-static Open() method is provided, which can only be invoked as a member
function of a previously instantiated object stream (whose format type is of course, implicit to
its class). This method takes a CNcbiIstream and a Boolean argument, specifying whether
or not the CNcbiIstream should also be deleted when the object stream is closed:
void Open(CNcbiIstream& inStream, bool deleteInStream = false);

The next three methods have the following definitions. Close() closes the stream.
GetDataFormat() returns the enumerated ESerialDataFormat for the stream.
ReadFileHeader() reads the first line from the file, and returns it in a string. This might be
used for example, in the following context:
auto_ptr<CObjectIStream> in(CObjectIStream::Open(fname, eSerial_AsnText));
string type = in.ReadFileHeader();
if (type.compare("Seq-entry") == 0) {
 CSeq_entry seqent;
 in->Read(ObjectInfo(seqent), eNoFileHeader);
 // ...
}
else if (type.compare("Bioseq-set") == 0) {
 CBioseq_set seqset;
 in->Read(ObjectInfo(seqset), eNoFileHeader);
 // ...
}
// ...

The ReadFileHeader() method for the base CObjectIStream class returns an empty string.
Only those stream classes which specialize in ASN.1 text or XML formats have actual
implementations for this method.

Several Read*() methods are provided for usage in different contexts. CObjectIStream::
Read() should be used for reading a top-level "root" object from a data file. For convenience,
the input operator >>, as described above, indirectly invokes this method on the input
stream, using a CObjectTypeInfo object derived from myObject. By default, the Read()
method first calls ReadFileHeader(), and then calls ReadObject(). Accordingly, calls to
Read() which follow the usage of ReadFileHeader()must include the optional
eNoFileHeader argument.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESerialDataFormat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamXml.html

C++ Toolkit Book Data Serialization (ASN

15-8

Most data objects also contain embedded objects, and the default behavior of Read() is to
load the top-level object, along with all of its contained subobjects into memory. In some
cases this may require significant memory allocation, and it may be only the top-level object
which is needed by the application. The next two methods, ReadObject() and
ReadSeparateObject(), can be used to load subobjects as either persistent data members
of the root object or as temporary local objects. In contrast to Read(), these methods assume
that there is no file header on the stream.
As a result of executing ReadObject(member), the newly created subobject will be
instantiated as a member of its parent object. In contrast, ReadSeparateObject(local),
instantiates the subobject in the local temporary variable only, and the corresponding data
member in the parent object is set to an appropriate null representation for that data type. In
this case, an attempt to reference that subobject after exiting the scope where it was created
generates an error.

The Skip() and SkipObject() methods allow entire top-level objects and subobjects to be
"skipped". In this case the input is still read from the stream and validated, but no object
representation for that data is generated. Instead, the data is stored in a delay buffer
associated with the object input stream, where it can be accessed as needed. Skip() should
only be applied to top-level objects. As with the Read() method, the optional ENoFileHeader
argument can be included if the file header has already been extracted from the data stream.
SkipObject(member) may be applied to subobjects of the root object.
All of the Read and Skip methods are like wrapper functions, which define what activities
take place immediately before and after the data is actually read. How and when the data is
then loaded into memory is determined by the object itself. Each of the above methods
ultimately calls objTypeInfo->ReadData() or objTypeInfo->SkipData(), where objTypeInto
is the static type information object associated with the data object. This scheme allows the
user to install type-specific read, write, and copy hooks, which are described below. For
example, the default behavior of loading all subobjects of the top-level object can be modified
by installing appropriate read hooks which use the ReadSeparateObject() and SkipObject()
methods where needed.

The CObjectOStream (%20) classes
The output object stream classes mirror the CObjectIStream classes. The CObjectOStream
base class is used to derive the CObjectOStreamXml, CObjectOStreamAsn, and CObjec-
tOStreamAsnBinary classes. There are no public constructors, and the user interface includes
the following methods:

• Open()

• Close()

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ReadObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ReadSeparateObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsn.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsnBinary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsnBinary.html

C++ Toolkit Book Data Serialization (ASN

15-9

• GetDataFormat()

• WriteFileHeader()

• Write()

• WriteObject()

• WriteSeparateObject()

• Flush()

• FlushBuffer()

Again, there are several Open() methods, which are static class methods that return a pointer
to a newly created CObjectOstream:

static CObjectOStream* Open(const string& fileName, ESerialDataFormat format);
static CObjectOStream* Open(ESerialDataFormat format,
 const string& fileName, unsigned openFlags = 0);
static CObjectOStream* Open(ESerialDataFormat format,
 CNcbiOstream& os, bool deleteOutStream = false);

The Write*() methods correspond to the Read*() methods defined for the input streams.
Write() first calls WriteFileHeader(), and then calls WriteObject(). WriteSeparateObject() can
be used to write a temporary object (and all of its children) to the output stream. It is also possible
to install type-specific write hooks. Like the Read() methods, these Write() methods serve as
wrapper functions that define what occurs immediately before and after the data is actually writ-
ten.

The CObjectStreamCopier (%20) classes
The CObjectStreamCopier class is neither an input nor an output stream class, but a helper
class, which allows one to "pass data through" without storing the intermediate objects in mem-
ory. Its sole constructor is:
CObjectStreamCopier(CObjectIStream& in, CObjectOStream& out);

and its most important method is the Copy(CObjectTypeInfo&) method, which, given an
object's description, reads that object from the input stream and writes it to the output stream. The
serial formats of both the input and output object streams are implicit, and thus the translation
between two different formats is performed automatically.

In keeping with the Read and Write methods of the CObjectIStream and CObjectOStream
classes, the Copy method takes an optional ENoFileHeader argument, to indicate that the file
header is not present in the input and should not be generated on the output. The CopyObject()
method corresponds to the ReadObject() and WriteObject() methods.

As an example, consider how the Run() method inxml2asn.cpp might be implemented differ-
ently using the CObjectStreamCopier class:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectStreamCopier.html

C++ Toolkit Book Data Serialization (ASN

15-10

int CTestAsn::Run() {
auto_ptr<CObjectIStream>
xml_in(CObjectIStream::Open("1001.xml", eSerial_Xml));
auto_ptr<CObjectOStream>
txt_out(CObjectOStream::Open("1001.asntxt", eSerial_AsnText));
CObjectStreamCopier txt_copier(*xml_in, *txt_out);
txt_copier.Copy(CBiostruc::GetTypeInfo());
auto_ptr<CObjectOStream>
 bin_out(CObjectOStream::Open("1001.asnbin", eSerial_AsnBinary));
CObjectStreamCopier bin_copier(*xml_in, *bin_out);
bin_copier.Copy(CBiostruc::GetTypeInfo());
return 0;
}

It is also possible to install type-specific Copy hooks. Like the Read and Write methods, the
Copy methods serve as wrapper functions that define what occurs immediately before and after
the data is actually copied.

Type-specific I/O routines
Much of the functionality needed to read and write serializable objects may be type-specific yet
application-driven. Because the specializations may vary with the application, it does not make
sense to implement fixed methods, yet we would like to achieve a similar kind of object-specific
behavior.

To address these needs, the C++ Toolkit provides hook mechanisms, whereby the needed
functionality can be installed with the object's static class type information object. Such hooks can
be installed globally, where they will be applied on all streams where these events occur, or
locally, where they will only be applied to a selected stream.

For any given object and specific stream, at most one read hook and one write hook is
"active". If myObject has a locally installed read hook as well as a global read hook, then the

locally installed hook will override the global hook when a read occurs on the "local" stream. Read
events on all of the other "non-local" streams will of course, trigger the globally installed hook.
Designating multiple read/write hooks (both local and global) for a selected object does not gen-
erate an error. Older or less specific hooks are simply overridden by the more specific or most
recently installed hook.

The Read hook classes
All of the different contexts in which an object might be encountered on an input stream can be
reduced to three cases:

1. as a stand-alone object

2. as a data member of a containing object

3. as a variant of a choice object

C++ Toolkit Book Data Serialization (ASN

15-11

Hooks can be installed for each of these contexts, depending on the desired level of speci-
ficity. Corresponding to these contexts, three abstract base classes provide the foundations for
deriving new Read hooks:

• CReadObjectHook

• CReadClassMemberHook

• CReadChoiceVariantHook

Each of these base hook classes exists only to define a pure virtual Read method, which can
then be implemented (in a derived subclass) to install the desired type of read hook. If the goal is
to apply the new Read method in all contexts, then the new hook should be derived from the
CReadObjectHook class, and registered with the object's static type information object. For
example, to install a new CReadObjectHook for a CBioseq, one might use:

CObjectTypeInfo(CBioseq::GetTypeInfo()).SetGlobalReadHook(myReadBioseqHook);

Another way of installing hooks of any type (read/write/copy, object/member/variant) is pro-
vided by CObjectHookGuard class described below.

Alternatively, if the desired behavior is to trigger the specialized Read method only when the
object occurs as a data member of a particular containing class, then the new hook should be
derived from the CReadClassMemberHook, and registered with that member's type information
object:

CObjectTypeInfo(CBioseq::GetTypeInfo()).FindMember("Seq-inst").SetGlobalReadHook
(myReadSeqinstHook);

Similarly, one can install a read hook that will only be triggered when the object occurs as a
choice variant:

CObjectTypeInfo(CSeq_entry::GetTypeInfo()).FindVariant("Bioseq").SetGlobalReadHook
(myReadBioseqHook);

The new hook classes for these examples should be derived from CReadObjectHook,
CReadClassMemberHook, and CReadChoiceVariantHook, respectively. In the first case, all
occurrences of CBioseq on any input stream will trigger the new Read method. In contrast, the
last case installs this new Read method to be triggered only when the CBioseq occurs as a
choice variant in a CSeq_entry object.

All of the virtual Read methods take two arguments: a CObjectIStream and a reference to
aCObjectInfo. For example, the CReadObjectHook class declares the ReadObject() method
as:

virtual void ReadObject(CObjectIStream& in,
 const CObjectInfo& object) = 0;

The ReadClassMember and ReadChoiceVariant hooks differ from the ReadObject hook
class, in that the second argument to the virtual Read method is an iterator, pointing to the object
type information for a data member or choice variant respectively.

In summary, to install a read hook for an object type:

C++ Toolkit Book Data Serialization (ASN

15-12

1. derive a new class from the appropriate hook class:

• if the target object occurs in any context, use the CReadObjectHook class.

• if the target object occurs as a data member, use the CReadClassMemberHook
class.

• if the target object occurs as a choice variant, use the CReadChoiceVariant Hook
class.

2. implement the virtual Read method for the new class.

3. install the hook, using the SetGlobalReadHook() or SetLocalReadHook() method
defined in

• CObjectTypeInfo for a CReadObjectHook

• CMemberInfo for a CReadClassMemberHook

• CVariantInfo for a CReadChoiceVariantHook

or use CObjectHookGuard class to install any of these hooks.

In many cases you will need to read the hooked object and do some special processing, or to
skip the entire object. To simplify object reading or skipping all base hook classes have Default-
Read() and DefaultSkip() methods taking the same arguments as the user provided ReadXXXX()
methods. Thus, to read a bioseq object from a hook:

void CMyReadObjectHook::ReadObject(CObjectIStream& in, const CObjectInfo& object)
{
 DefaultRead(in, object);
 // Do some user-defined processing of the bioseq
}

Note that from a choice variant hook you can not skip stream data -- this could leave the
choice object in an uninitialized state. For this reason the CReadChoiceVariantHook class has no
DefaultSkip() method.

For a good example of using a CReadClassMemberHook object, see the asn2asn.cpp and
testserial.cpp demo programs.

The Write hook classes
The Write hook classes parallel the Read hook classes, and again, we have three base classes:

• CWriteObjectHook

• CWriteClassMemberHook

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test/testserial.cpp

C++ Toolkit Book Data Serialization (ASN

15-13

• CWriteChoiceVariantHook

These classes define the pure virtual methods:
CWriteObjectHook::WriteObject(CObjectOStream&,

 const CConstObjectInfo& object) = 0;

CWriteClassMemberHook::WriteClassMember(CObjectOStream&,
 const CConstObjectInfoMI& member) = 0;

CWriteChoiceVariantHook::WriteChoiceVariant(CObjectOStream&,
 const CConstObjectInfoCV& variant) = 0;

Like the read hooks, your derived write hooks can be installed by invoking the SetGlobal-
WriteObjectHook() or SetLocalWriteObjectHook() methods for the appropriate type information
objects. Corresponding to the examples for read hooks then, we would have:

CObjectTypeInfo(CBioseq::GetTypeInfo()).SetGlobalWriteHook(myWriteBioseqHook);
CObjectTypeInfo(CBioseq::GetTypeInfo()).FindMember("Seq-inst").SetGlobalWriteHook
(myWriteSeqinstHook);

CObjectTypeInfo(CSeq_entry::GetTypeInfo()).FindVariant("Bioseq").SetGlobalWriteHook
(myWriteBioseqHook);

CObjectHookGuard class provides is a simple way to install write hooks.
The asn2asn.cpp and testserial.cpp demo programs also demonstrate the usage of the

CWriteClassMemberHook class.

The Copy hook classes
As with the Read and Write hook classes, there are three base classes which define the following
Copy methods:
CCopyObjectHook::CopyObject(CObjectStreamCopier& copier,
 const CObjectTypeInfo& object) = 0;

CCopyClassMemberHook::CopyClassMember(CObjectStreamCopier& copier,
 const CObjectTypeInfoMI& member) = 0;

CCopyChoiceVariantHook::CopyChoiceVariant(CObjectStreamCopier&,
 const CObjectTypeInfoCV& variant) = 0;

Newly derived copy hooks can be installed by invoking the SetGlobalCopyObjectHook() or
SetLocalCopyObjectHook() methods for the appropriate type information objects. The other
way of installing hooks is described below in the CObjectHookGuard section.

To do default copying of an object in the overloaded hook method each of the base copy
hook classes has DefaultCopy() method.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test/testserial.cpp

C++ Toolkit Book Data Serialization (ASN

15-14

The CObjectHookGuard class
To simplify hooks usage CObjectHookGuard class may be used. It's a template class: the tem-
plate parameter is the class to be hooked (in case of member or choice variant hooks it's the
parent class of the member).

The CObjectHookGuard class has several constructors for installing different hook types. The
last argument to all constructors is a stream pointer. By default the pointer is NULL and the hook
is intalled as a global one. To make the hook stream-local pass the stream to the guard construc-
tor.

• Object read/write hooks:
CObjectHookGuard(CReadObjectHook& hook, CObjectIStream* in = 0);
CObjectHookGuard(CWriteObjectHook& hook, CObjectOStream* out = 0);

• Class member read/write hooks:
CObjectHookGuard(string id, CReadClassMemberHook& hook, CObjectIStream* in = 0);
CObjectHookGuard(string id, CWriteClassMemberHook& hook, CObjectOStream* out = 0);

The string "id" argument is the name of the member in ASN.1 specification for generated
classes.

• Choice variant read/write hooks:
CObjectHookGuard(string id, CReadChoiceVariantHook& hook, CObjectIStream* in = 0);
CObjectHookGuard(string id, CWriteChoiceVariantHook& hook, CObjectOStream* out =
0);

The string "id" argument is the name of the variant in ASN.1 specification for generated
classes.

The guard's destructor will uninstall the hook. Since all hook classes are derived from COb-
ject and stored as CRef<>-s, the hooks are destroyed automatically when uninstalled. For this
reason it's recommended to create hook objects on heap.

Stack Path Hooks
When using serialization hooks one might want to specify a more specific context when such
hook should be triggered. For example, "I want to hook the reading of object A when and only
when it is a member of object B, not all occurrences of object A", or "I want to hook the reading of
all members named 'Title' in all objects, not only in a specific one". The serial library makes it
possible to set serialization hooks by string that describes a place (or stack path), for example:

TypeName.Member1.Member2.HookedMember

The format of the string is as follows:
Stackpath ::= (TypeName | Wildcard) ('.' (MemberName | Wildcard))+

Where TypeName and MemberName are strings, '.' is a separator. Wildcard is defined as
Wildcard ::= ('?' | '*')

Here the question mark means "one member with any name", while the asterisk means "one
or more members with any names".

C++ Toolkit Book Data Serialization (ASN

15-15

As with regular serialization hooks, it is possible to install a path hookfor a specific object:
CObjectTypeInfo(CBioseq::GetTypeInfo()).SetPathReadHook(in, path, myReadBioseqHook);

a data member of an object:
CObjectTypeInfo(CBioseq::GetTypeInfo()).FindMember("Seq-nst").SetPathReadHook(in,

path, myReadSeqinstHook);

or a variant of a choice object:
CObjectTypeInfo(CSeq_entry::GetTypeInfo()).FindVariant("Bioseq").

SetPathReadHook(in, path, myReadBioseqHook);

Here in is a pointer to an input object stream. If it is equal to zero, the hook will be installed glob-

ally, otherwise - for that particular stream. In addition to that, it is possible to install such hooks in
object streams. So, for example to install a read hook on all string data members and choice vari-
ants named LastName, one could use either the following code:

CObjectTypeInfo(CStdTypeInfo<string>::GetTypeInfo()).SetPathReadHook(in,"*.LastName",
myObjHook);

Or this one:
in->SetPathReadObjectHook("*.LastName", myObjHook);

Setting path hooks directly in streams also makes it possible to differentiate between LastName
being a data member and choice variant. So, for example

in->SetPathReadMemberHook("*.LastName", myMemHook);

will catch all data members and skip choice variants; while
in->SetPathReadVariantHook("*.LastName", myVarHook);

will trigger for all variants and skip data members.

Stream Iterators
When working with a stream, it is sometimes convenient to be able to read or write data elements
directly, bypassing the standard data storage mechanism. For example, when reading a large
container object, the purpose could be to process its elements. It is possible to read everything at
once, but this could require a lot of memory to store the data in. An alternative approach, which
greatly reduces the amount of required memory, could be to read elements one by one, process
them as they arrive, and then discard. Or, when writing a container, one could construct it in
memory only partially, and then add missing elements 'on the fly' - where appropriate. To make it
possible, the SERIAL library introduces stream iterators. Needless to say, the most convenient
way of using this mechanism is in read/write hooks.

SERIAL library defines the following stream iterator classes: CIStreamClassMemberIterator
and CIStreamContainerIterator for input streams, and COStreamClassMember and
COStreamContainer for output ones.

Reading a container could look like this:

C++ Toolkit Book Data Serialization (ASN

15-16

for (CIStreamContainerIterator i(in, containerType); i; ++i) {
 CElementClass element;
 i >> element;
}

Writing - like this:
COStreamContainer o(out, containerType);

// set<CElementClass> container - is your own data container defined elsewhere
for (set<CElementClass>::const_iterator i = container.begin(); i != container.end(); +
+i) {
const CElementClass& element = *i;
o << element;
}

For more examples of using stream iterators please refer to asn2asn sample application.

The ByteBlock and CharBlock classes
CObject[IO]Stream::ByteBlock class may be used for non-standard processing of an OCTET
STRING data, e.g. from a read/write hooks. The CObject[IO]Stream::CharBlock class has
almost the same functionality, but may be used for VisibleString data processing.

An example of using ByteBlock or CharBlock classes is generating data on-the-fly in a write
hook. To use block classes:

1. Initialize the block variable with an i/o stream and, in case of output stream, the length of
the block.

2. Use Read()/Write() functions to process block data

3. Close the block with the End() function

Below is an example of using CObjectOStream::ByteBlock in an object write hook for non-
standard data processing. Note, that ByteBlock and CharBlock classes read/write data only. You
should also provide some code for writing class' and members' tags.

Since OCTET STRING and VisibleString in the NCBI C++ Toolkit are implemented as vec-
tor<char> and string classes, which have no serailization type info, you can not install a read or
write hook for these classes. The example also demonstrates how to process members of these
types using the contaning class hook. Another example of using CharBlock with write hooks can
be found in testserial.cpp application.

void CWriteMyObjectHook::WriteObject(CObjectOStream& out,
 const CConstObjectInfo& object)
{
 const CMyObject& obj = *reinterpret_cast<const CMyObject*>
 (object.GetObjectPtr());
 if (NothingToProcess(obj)) {
 // No special processing - use default write method
 DefaultWrite(out, object);
 return;
 }
 // Write object open tag

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test/testserial.cpp

C++ Toolkit Book Data Serialization (ASN

15-17

 out.BeginClass(object.GetClassTypeInfo());
 // Iterate object members
 for (CConstObjectInfo::CMemberIterator member =
 object.BeginMembers(); member; ++member) {
 if (NeedProcessing(member)) {
 // Write the special member manually
 out.BeginClassMember(member.GetMemberInfo()->GetId());
 // Start byte block, specify output stream and block size
 size_t length = GetRealDataLength(member);
 CObjectOStream::ByteBlock bb(out, length);
 // Processing and output
 for (int i = 0; i < length;) {
 char* buf;
 int buf_size;
 // Assuming ProcessData() generates the data from "member",
 // starting from position "i" and stores the data to "buf"
 ProcessData(member, i, &buf_size, &buf);
 i += buf_size;
 bb.Write(buf, buf_size);
 }
 }
 // Close the byte block
 bb.End();
 // Close the member
 out.EndClassMember();
 }
 else {
 // Default writer for members without special processing
 if (member.IsSet())
 out.WriteClassMember(member);
 }
 // Close the object
 out.EndClass();
}

NCBI C++ Toolkit Network Service (RPC) Clients
The following topics are discussed in this section:

• Introduction and Use

• Implementation Details

Introduction and Use
The C++ Toolkit now contains datatool-generated classes for certain ASN.1-based network

services: at the time of this writing, Entrez2, ID1, and MedArch. (There is also an independently
written class for the Taxon1 service, CTaxon1, which this page does not discuss further.) All of
these classes, declared in headers named objects/.../client(_).hpp, inherit certain useful proper-
ties from the base template CRPCClient<>:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTaxon1&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CRPCClient&d=C

C++ Toolkit Book Data Serialization (ASN

15-18

• They normally defer connection until the first actual query, and disconnect automatically
when destroyed, but let users request either action explicitly.

• They are designed to be thread-safe (but, at least for now, maintain only a single connec-
tion per instance, so forming pools may be appropriate).

The usual interface to these classes is through a family of methods named AskXxx, each of
which takes a request of an appropriate type and an optional pointer to an object that will receive
the full reply and returns the corresponding reply choice. For example, CEntrez2Client::
AskEval_boolean takes a request of type const CEntrez2_eval_boolean& and an optional
pointer of type CEntrez2_reply*, and returns a reply of type CRef<CEntrez2_boolean_reply>.
All of these methods automatically detect server-reported errors or unexpected reply choices, and
throw appropriate exceptions when they occur. There are also lower-level methods simply named
Ask, which may come in handy if you do not know what kind of query you will need to make.

In addition to these standard methods, there are certain class-specific methods: CEntrez2-
Client adds GetDefaultRequest and SetDefaultRequest for dealing with those fields of
Entrez2-request besides request itself, and CID1Client adds {Get,Set}AllowDeadEntries (off

by default) to control how to handle the result choice gotdeadseqentry.

Implementation Details
In order to get datatool to generate classes for a service, you must add some settings to the

corresponding modulename.def file. Specifically, you must set [-]clients to the relevant base file
name (typically service_client), and add a correspondingly named section containing the

entries listed in Table 1. (If a single specification defines multiple protocols for which you would
like datatool to generate classes, you may list multiple client names, separated by spaces.)

Table 1. Network Service Client Generation Parameters

Name Value

class (REQUIRED) C++ class name to use.
service Named service to connect to; if you do not define this,

you will need to override x_Connect in the user
class.

serialformat Serialization format: normally AsnBinary, but AsnText
and Xml are also legal.

request (REQUIRED) ASN.1 type for requests; may include a module name, a
field name (as with Entrez2), or both. Must be a
CHOICE.

reply (REQUIRED) ASN.1 type for replies, as above.
reply.choice_name Reply choice appropriate for requests of type

choice_name; defaults to choice_name as well,
and determines the return type of AskChoice_name.

C++ Toolkit Book Data Serialization (ASN

15-19

Name Value

May be set to special to suppress automatic method
generation and let the user class handle the whole
thing.

Verification of Class Member Initialization
When serializing an object, it is important to verify that all mandatory primitive data members (e.g.
strings, integers) are given a value. The NCBI C++ Toolkit implements this through a data initial-
ization verification mechanism. In this mechanism, the value itself is not validated; that is, it still
could be semantically incorrect. The purpose of the verification is only to make sure that the
member has been assigned some value. The verification also provides for a possibility to check
whether the object data member has been initialized or not. This could be useful when construct-
ing such objects in memory.

From this perspective, each data member (XXX) of a serial object generated by DATATOOL
from an ASN or XML specification has the IsSetXXX() and CanGetXXX() methods. Also, input
and output streams have SetVerifyData() and GetVerifyData() methods. The purpose of
CanGetXXX() method is to answer the question whether it is safe or not to call the corresponding
GetXXX(). The meaning of IsSetXXX() is whether the data member has been assigned a value
explicitly (using assignment function call, or as a result of reading from a stream) or not. The
stream's SetVerifyData() method defines a stream behavior in case it comes across an uninitial-
ized data member.

There are three kinds of object data members:

• optional ones,

• mandatory with a default value,

• mandatory with no default value.

Optional members and mandatory ones with no default have "no value" initially. As such, they
are "ungetatable"; that is, GetXXX() throws an exception (this is also configurable though).
Mandatory members with a default are always getable, but not always set. It is possible to assign
a default value to a mandatory member with a default value. In this case it becomes set, and as
such will be written into an output stream.

The discussion above refers only to primitive data members, such as strings, or integers. The
behavior of containers is somewhat different. All containers are pre-created on the parent object
construction, so for container data members CanGetXXX() always returns TRUE. This can be
justified by the fact that containers have a sort of "natural default value" - empty. Also, IsSetXXX()
will return TRUE if the container is either mandatory, or has been read (even if empty) from the
input stream, or SetXXX() was called for it.

The following additional topics are discussed in this section:

C++ Toolkit Book Data Serialization (ASN

15-20

• Initialization Verification in CSerialObject Classes

• Initialization Verification in Object Streams

Initialization Verification in CSerialObject Classes
CSerialObject defines two functions to manage how uninitialized data members would be
treated:

static void SetVerifyDataThread(ESerialVerifyData verify);
 static void SetVerifyDataGlobal(ESerialVerifyData verify);

The SetVerifyDataThread() defines the behavior of GetXXX() for the current thread, while
the SetVerifyDataGlobal() for the current process. Please note, that disabling CUnassigned-
Member exceptions in GetXXX() function is potentially dangerous because it could silently return
garbage.

The behavior of initialization verification has been designed to allow for maximum flexibility. It
is possible to define it using environment variables, and then override it in a program, and vice
versa. It is also possible to force a specific behavior, no matter what the program sets, or could
set later on. The ESerialVerifyData enumerator could have the following values:

• eSerialVerifyData_Default

• eSerialVerifyData_No

• eSerialVerifyData_Never

• eSerialVerifyData_Yes

• eSerialVerifyData_Always

Setting eSerialVerifyData_Never or eSerialVerifyData_Always results in a "forced" behav-
ior: setting eSerialVerifyData_Never prohibits later attempts to enable verification; setting eSeri-
alVerifyData_Always prohibits attempts to disable it. The default behavior could be defined from
the outside, using the SET_VERIFY_DATA_GET environment variable:

SET_VERIFY_DATA_GET ::= ('NO' | 'NEVER' | 'YES' | 'ALWAYS')

Alternatively, the default behavior can also be set from a program code using CSerialOb-
ject::SetVerifyDataXXX() functions.

Setting the environment variable to "Never/Always" overrides any attempt to change the veri-
fication behavior in the program. Setting "Never/Always" for the process overrides attempts to
change it for a thread. "Yes/No" setting is less restrictive: the environment variable, if present,
provides the default, which could then be overridden in a program, or thread. Here thread settings
supersede the process ones.

Initialization Verification in Object Streams
Data member verification in object streams is a bit more complex.

First, it is possible to set the verification behavior on three different levels:

C++ Toolkit Book Data Serialization (ASN

15-21

• for a specific stream (SetVerifyData()),

• for all streams created by a current thread (SetVerifyDataThread()),

• for all stream created by the current process (SetVerifyDataGlobal()).

Second, there are more options in defining what to do in case of an uninitialized data mem-
ber:

• throw an exception;

• skip it on writing (write nothing), and leave uninitialized (as is) on reading;

• write some default value on writing, and assign it on reading (even though there is no default).

So, ESerialVerifyData enumerator could now have two more values: eSerialVerifyData_Def-
Value and eSerialVerifyData_DefValueAlways. In this case, on reading a missing data member,
stream initializes it with a "default" (usually 0); on writing the unset data member, it writes it "as
is". For comparison: in the "No/Never" case on reading a missing member stream could initialize
it with a "garbage", while on writing it writes nothing. The latter case produces semantically incor-
rect output, but preserves information of what has been set, and what is not set.

The default behavior could be set similarly to CSerialObject. The environment variables are
as follows:

SET_VERIFY_DATA_READ ::= ('NO' | 'NEVER' | 'YES' | 'ALWAYS' | 'DEFVALUE' | 'DEFVALUE_ALWAYS')
 SET_VERIFY_DATA_WRITE ::= ('NO' | 'NEVER' | 'YES' | 'ALWAYS' | 'DEFVALUE' | 'DEFVALUE_ALWAYS')

Simplified Serialization Interface
The reading and writing of serial object requires creation of special object streams which encode
and decode data. While such streams provide with a greater flexibility in setting the formatting
parameters, in some cases it is not needed - the default behavior is quite enough. NCBI C++
toolkit library makes it possible to use the standard I/O streams in this case, thus hiding the cre-
ation of object streams. So, the serialization would look like this:

cout << MSerial_AsnText << obj;

The only information that is always needed is the output format. It is defined by the following
stream manipulators:

• MSerial_AsnText

• MSerial_AsnBinary

• MSerial_Xml

Few additional manipulators define the handling of un-initialized object data members:

• MSerial_VerifyDefault

• MSerial_VerifyNo

C++ Toolkit Book Data Serialization (ASN

15-22

• MSerial_VerifyYes

• MSerial_VerifyDefValue

The NCBI C++ Toolkit Iterators
The following topics are discussed in this section:

• STL generic iterators

• CTypeIterator (*) and CTypeConstIterator (*)

• Class hierarchies, embedded objects, and the NCBI C++ type iterators

• CObjectIterator (*) and CObjectConstIterator (*)

• CStdTypeIterator (*) and CStdTypeConstIterator (*)

• CTypesIterator (*)

• Additional Information

STL generic iterators
Iterators are an important cornerstone in the generic programming paradigm - they serve as
intermediaries between generic containers and generic algorithms. Different containers have dif-
ferent access properties, and the interface to a generic algorithm must account for this. This is
depicted graphically below, for the list and vector containers and the sort, find, and merge algo-
rithms.

See Figure 1.

Figure 1: Iterarors for some STL classes

C++ Toolkit Book Data Serialization (ASN

15-23

The vector class allows input, output, bidirectional, and random access iterators. In contrast,
the list container class does not allow random access to its elements. This is depicted graphi-
cally by one less strand in the ribbon connector. In addition to the iterators, the generic algorithms
may require function objects such as less<T> to support the template implementations.

The STL standard iterators are designed to iterate through any STL container of homoge-
neous elements, e.g., vectors, lists, deques, stacks, maps, multimaps, sets, multisets, etc. A
prerequisite however, is that the container must have begin() and end() functions defined on it as
start and end points for the iteration.

But while these standard iterators are powerful tools for generic programming, they are of no
help in iterating over the elements of aggregate objects - e.g., over the heterogeneous data
members of a class object. As this is an essential operation in processing serialized data struc-
tures, the NCBI C++ Toolkit provides additional types of iterators for just this purpose. In the
section on Runtime object type information, we described the CMemberIterator and CVariantIt-
erator classes, which provide access to the instance and type information for all of the data
members and choice variants of a class or choice object. In some cases however, we may wish
to visit only those data members which are of a certain type, and do not require any type informa-
tion. The iterators described in this section are of this type.

CTypeIterator (%20) and CTypeConstIterator (%20)
The CTypeIterator and CTypeConstIterator can be used to traverse a structured object, stop-
ping at all data members of a specified type. For example, it is very common to represent a linked
list of objects by encoding a next field that embeds an object of the same type. One way to tra-
verse the linked list then, would be to "iterate" over all objects of that type, beginning at the head
of the list. For example, suppose you have a CPersonclass defined as:

class CPerson
{
public:
 CPerson(void);
 CPerson(const string& name, const string& address, CPerson* p);
 virtual ~CPerson(void);
 static const CTypeInfo* GetTypeInfo(void);
 string m_Name, m_Addr;
 CPerson *m_NextDoor;
};

Given this definition, one might then define a neighborhood using a single CPerson.

Assuming a function FullerBrushMan(CPerson&) must now be applied to each person in the
neighborhood, this could be implemented using a CTypeIterator as follows:

CPerson neighborhood("Moe", "123 Main St",
 new CPerson("Larry", "127 Main St",
 new CPerson("Curly", "131 Main St", 0)));

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCTypeIterator.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCTypeConstIterator.html

C++ Toolkit Book Data Serialization (ASN

15-24

for (CTypeIterator<CPerson> house(Begin(neighborhood)); house; ++house) {
 FullerBrushMan(*house);
}

In this example, the data members visited by the iterator are of the same type as the top-level
aggregate object, since neighbor is an instance of CPerson. Thus, the first "member" visited is

the top-level object itself. This is not always the case however. The top-level object is only
included in the iteration when it is an instance of the type specified in the template argument
(CPerson in this case).

All of the NCBI C++ Toolkit type iterators are recursive. Thus, since neighborhood has

CPerson data members, which in turn contain objects of type CPerson, all of the nested data
members will also be visited by the above iterator. More generally, given a hierarchically struc-
tured object containing data elements of a given type nested several levels deep, the NCBI C++
Toolkit type iterators effectively generate a "flat" list of all these elements.

It is not difficult to imagine situations where recursive iterators such as the CTypeIterator
could lead to infinite loops. An obvious example of this would be a doubly-linked list. For example,
suppose CPerson had both previous and next data members, where x->next->previous == x.

In this case, visiting x followed by x->next would lead back to x with no terminating condition.

To address this issue, the Begin() function accepts an optional second argument, eDetect-
Loops. eDetectLoops is an enum value which, if included, specifies that the iterator should

detect and avoid infinite loops. The resulting iterator will be somewhat slower but can be safely
used on objects whose references might create loops.

Let's compare the syntax of this new iterator class to the standard iterators:
ContainerType<T> x;

for (ContainerType<T>::IteratorType i = x.begin(); i != x.end(); ++i)
for (CTypeIterator<T> i(Begin(ObjectName)); i; ++i)

The standard iterator begins by pointing to the first item in the container x.begin(), and with
each iteration, visits subsequent items until the end of the container x.end() is reached. Similarly,
the CTypeIterator begins by pointing to the first data member of ObjectName that is of type T,

and with each iteration, visits subsequent data members of type T until the end of the top-level
object is reached.

A lot of code actually uses = Begin(...) instead of (Begin(...)) to initialize iterators; although the
alternate syntax is somewhat more readable and often works, some compilers can mis-handle it
and give you link errors. As such, direct initialization as shown above generally works better.
Also, note that this issue only applies to construction; you should (and must) continue to use = to
reset existing iterators.

How are generic iterators such as these implemented? The Begin() expression returns an
object containing a pointer to the input object ObjectName, as well as a pointer to a CTypeInfo
object containing type information about that object. On each iteration, the ++ operator examines
the current type information to find the next data member which is of type T. The current object,
its type information, and the state of iteration is pushed onto a local stack, and the iterator is then
reset with a pointer to the next object found, and in turn, a pointer to its type information. Each

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDetectLoops
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDetectLoops
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=Begin

C++ Toolkit Book Data Serialization (ASN

15-25

data member of type T (or derived from type T) must be capable of providing its own type infor-
mation as needed. This allows the iterator to recursively visit all data members of the specified
type at all levels of nesting.

More specifically, each object included in the iteration, as well as the initial argument to
Begin(), must have a statically implemented GetTypeInfo() class member function to provide the
needed type information. For example, all of the serializable objects generated by datatool in

the src/objects subtrees have GetTypeInfo() member functions. In order to apply type iterators to
user-defined classes (as in the above example), these classes must also make their type informa-
tion explicit. A set of macros described in the section on User-defined Type Information are
provided to simplify the implementation of the GetTypeInfo() methods for user-defined classes.
The example included at the end of this section (see Additional Information) uses several of the C
++ Toolkit type iterators and demonstrates how to apply some of these macros.

The CTypeConstIterator parallels the CTypeIterator, and is intended for use with const
objects (i.e. when you want to prohibit modifications to the objects you are iterating over). For
const iterators, the ConstBegin() function should be used in place of Begin().

Class hierarchies, embedded objects, and the NCBI C++ type iterators
As emphasized above, all of the objects visited by an iterator must have the GetTypeInfo()
member function defined in order for the iterators to work properly. For an iterator that visits
objects of type T, the type information provided by GetTypeInfo() is used to identify:

• data members of type T

• data members containing objects of type T

• data members derived from type T

• data members containing objects derived from type T

Explicit encoding of the class hierarchy via the GetTypeInfo() methods allows the user to
deploy a type iterator over a single specified type which may in practice include a set of types via
inheritance. The section Additional Information details a simple example of this feature. The pre-
processor macros used in this example which support the encoding of hierarchical class relations
are described in the User-defined Type Information section. A further generalization of this idea is
implemented by the CTypesIterator described later.

CObjectIterator (%20) and CObjectConstIterator (%20)
Because the CObject class is so central to the Toolkit, a special iterator is also defined, which
can automatically distinguish CObjects from other class types. The syntax of a CObjectIterator
is:
for (CObjectIterator i(Begin(ObjectName)); i; ++i)

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetTypeInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/iterator.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/iterator.hpp

C++ Toolkit Book Data Serialization (ASN

15-26

Note that there is no need to specify the object type to iterate over, as the type CObject is
built into the iterator itself. This iterator will recursively visit all CObjects contained or referenced
in ObjectName. The CObjectConstIterator is identical to the CObjectIterator but is designed to

operate on const elements and uses the ConstBegin() function.
User-defined classes that are derived from CObject can also be iterated over (assuming their

GetTypeInfo() methods have been implemented). In general however, care should be used in
applying this type of iterator, as not all of the NCBI C++ Toolkit classes derived from CObject
have implementations of the GetTypeInfo() method. All of the generated serializable objects in
include/objectsdo have a defined GetTypeInfo() member function however, and thus can be iter-
ated over using either a CObjectIterator or a CTypeIterator with an appropriate template argu-
ment.

CStdTypeIterator (%20) and CStdTypeConstIterator (%20)
All of the type iterators described thus far require that each object visited must provide its own
type information. Hence, none of these can be applied to standard types such as int, float, dou-
ble or the STL type string. The CStdTypeIterator and CStdTypeConstIterator classes selec-
tively iterate over data members of a specified type. But for these iterators, the type must be a
simple C type (int, double, char*, etc.) or an STL type string. For example, to iterate over all the
string data members in a CPerson object, we could use:

for (CStdTypeIterator<string> i(Begin(neighborhood)); i; ++i) {
 cout << *i << ' ';
}

The CStdTypeConstIterator is identical to the CStdTypeIterator but is designed to operate
on const elements and requires the ConstBegin() function.

Code examples using the CTypeIterator and CStdTypeIterator are given in ctypeiter.cpp
(see Box 2; for ctypeiter.hpp, see Box 3).

CTypesIterator (%20)
Sometimes it is necessary to iterate over a set of types contained inside an object. The CType-
sIterator, as its name suggests, is designed for this purpose. For example, suppose you have
loaded a gene sequence into memory as a CBioseq (named seq), and want to iterate over all of

its references to genes and organisms. The following sequence of statements defines an iterator
that will step through all of seq's data members (recursively), stopping only at references to gene

and organism citations:
CTypesIterator i;
CType<CGene_ref>::AddTo(i); // define the types to stop at
CType<COrg_ref>::AddTo(i);

for (i = Begin(seq); i; ++i) {

 if (CType<CGene_ref>::Match(i)) {
 CGene_ref* geneRef = CType<CGene_ref>::Get(i);
 ...

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCStdTypeIterator.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCStdTypeConstIterator.html
http://www.ncbi/IEB/ToolBox/CPP_DOC/doxyhtml/group__ObjHierarchy.html#a3

C++ Toolkit Book Data Serialization (ASN

15-27

 }
 else if (CType<COrg_ref>::Match(i) {
 COrg_ref* orgRef = CType<COrg_ref>::Get(i);
 ...
 }
}

Here, CType is a helper template class that simplifies the syntax required to use the multiple
types iterator:

• CType<TypeName>::AddTo(i) specifies that iterator i should stop at type TypeName.

• CType<TypeName>::Match(i) returns true if the specified type TypeName is the type cur-
rently pointed to by iterator i.

• CType<TypeName>::Get(i) retrieves the object currently pointed to by iterator iif there is a

type match to TypeName, and otherwise returns 0. In the event there is a type match, the
retrieved object is type cast to TypeName before it is returned.

The Begin() expression is as described for the above CTypeIterator and CTypeConstItera-
tor classes. The CTypesConstIterator is the const implementation of this type of iterator, and
requires the ConstBegin() function.

Additional Information
The following example demonstrates how the class hierarchy determines which data members
will be included in a type iterator. The example uses five simple classes:

• Class CA contains a single int data member and is used as a target object type for the
type iterators demonstrated.

• class CB contains an auto_ptr to a CA object.

• Class CC is derived from CA and is used to demonstrate the usage of class hierarchy
information.

• Class CD contains an auto_ptr to a CC object, and, since it is derived from CObject, can
be used as the object pointed to by a CRef.

• Class CX contains both pointers-to and instances-of CA, CB, CC, and CD objects, and is
used as the argument to Begin() for the demonstrated type iterators.

The preprocessor macros used in this example implement the GetTypeInfo() methods for the
classes, and are described in the section on User-defined type information.

// Define a simple class to use as iterator's target objects
class CA
{
public:
 CA() : m_Data(0) {};

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCType.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTypesConstIterator

C++ Toolkit Book Data Serialization (ASN

15-28

 CA(int n) : m_Data(n) {};
 static const CTypeInfo* GetTypeInfo(void);
 int m_Data;
};
// Define a class containing an auto_ptr to the target class
class CB
{
public:
 CB() : m_a(0) {};
 static const CTypeInfo* GetTypeInfo(void);
 auto_ptr<CA> m_a;
};
// define a subclass of the target class
class CC : public CA
{
public:
 CC() : CA(0){};
 CC(int n) : CA(n){};
 static const CTypeInfo* GetTypeInfo(void);
};

// define a class derived from CObject to use in a CRef
// this class also contains an auto_ptr to the target class
class CD : public CObject
{
public:
 CD() : m_c(0) {};
 static const CTypeInfo* GetTypeInfo(void);
 auto_ptr<CC> m_c;
};
// This class will be the argument to the iterator. It contains 4
// instances of CA - directly, through pointers, and via inheritance
class CX
{
public:
 CX() : m_a(0), m_b(0), m_d(0) {};
 ~CX(){};
 static const CTypeInfo* GetTypeInfo(void);
 auto_ptr<CA> m_a; // auto_ptr to a CA
 CB *m_b; // pointer to an object containing a CA
 CC m_c; // instance of a subclass of CA
 CRef<CD> m_d; // CRef to an object containing an auto_ptr to CC
};
////////// Implement the GetTypeInfo() methods /////////
////////// (see User-defined type information) /////////
BEGIN_CLASS_INFO(CA)
{
 ADD_STD_MEMBER(m_Data);
 ADD_SUB_CLASS(CC);
}
END_CLASS_INFO

C++ Toolkit Book Data Serialization (ASN

15-29

BEGIN_CLASS_INFO(CB)
{
 ADD_MEMBER(m_a, STL_auto_ptr, (CLASS, (CA)));
}
END_CLASS_INFO

BEGIN_DERIVED_CLASS_INFO(CC, CA)
{
}
END_DERIVED_CLASS_INFO

BEGIN_CLASS_INFO(CD)
{
 ADD_MEMBER(m_c, STL_auto_ptr, (CLASS, (CC)));
}
END_CLASS_INFO

BEGIN_CLASS_INFO(CX)
{
 ADD_MEMBER(m_a, STL_auto_ptr, (CLASS, (CA)));
 ADD_MEMBER(m_b, POINTER, (CLASS, (CB)));
 ADD_MEMBER(m_c, CLASS, (CC));
 ADD_MEMBER(m_d, STL_CRef, (CLASS, (CD)));
}
END_CLASS_INFO

int main(int argc, char** argv)
{
 CB b;
 CD d;

 b.m_a.reset(new CA(2));
 d.m_c.reset(new CC(4));
 CX x;

 x.m_a.reset(new CA(1)); // auto_ptr to CA
 x.m_b = &b; // pointer to CB containing auto_ptr to CA
 x.m_c = *(new CC(3)); // instance of subclass of CA
 x.m_d = &d; // CRef to CD containing auto_ptr to CC

 cout << "Iterating over CA objects in x" << endl << endl;

 for (CTypeIterator<CA> i(Begin(x)); i; ++i)
 cout << (*i).m_Data << endl;

 cout << "Iterating over CC objects in x" << endl << endl;

 for (CTypeIterator<CC> i(Begin(x)); i; ++i)
 cout << (*i).m_Data << endl;

C++ Toolkit Book Data Serialization (ASN

15-30

 cout << "Iterating over CObjects in x" << endl << endl;
 for (CObjectIterator i(Begin(x)); i; ++i) {
 const CD *tmp = dynamic_cast<const CD*>(&*i);
 cout << tmp->m_c->m_Data << endl;
 }
 return 0;
}

Figure 2 illustrates the paths traversed by CTypeIterator<CA> and CTypeIterator<CC>,
where both iterators are initialized with Begin(a). The data members visited by the iterator are
indicated by enclosing boxes. See Figure 2.

Figure 2: Traversal path of the CTypeIterator

For additional examples of using the type iterators described in this section, see ctypeiter.
cpp.

Processing Serial Data
Although this discussion focuses on ASN.1 and XML formatted data, the data structures and tools
described here have been designed to (potentially) support any formalized serial data specifica-
tion. Many of the tools and objects have open-ended abstract or template implementations that
can be instantiated differently to fit various specifications.

The following topics are discussed in this section

• Accessing the object header files and serialization libraries

• Reading and writing serial data

• Determining Which Header Files to Include

• Determining Which Libraries to Link To

C++ Toolkit Book Data Serialization (ASN

15-31

Accessing the object header files and serialization libraries
Reading and writing serialized data is implemented by an integrated set of streams, filters, and
object types. An application that reads encoded data files will require the object header files and
libraries which define how these serial streams of data should be loaded into memory. This
entails #include statements in your source files, as well as the associated library specifications in
your makefiles. The object header and implementation files are located in the include/objects and
src/objects subtrees of the C++ tree, respectively. The header and implementation files for serial-
ized streams and type information are in the include/serial and src/serial directories.

If you have checked out the objects directories, but not explicitly run the datatool code

generator, then you will find that your include/objects subdirectories are (almost) empty, and the
source subdirectories contain only makefiles and ASN.1 specifications. These makefiles and
ASN.1 specifications can be used to build your own copies of the objects' header and implemen-
tation files, using make all_r (if you configured using the --with-objects flag), or running data-

tool explicitly.
However, building your own local copies of these header and implementation files is neither

necessary nor recommended, as it is simpler to use the pre-generated header files and prebuilt
libraries. The pre-built header and implementation files can be found in $NCBI/c++/include/
objects/ and $NCBI/c++/src/objects/, respectively. Assuming your makefile defines an include
path to $NCBI/c++/include, selected object header files such as Date.hpp, can be included as:

#include <OBJECTS Date.hpp general>

This header file (along with its implementations in the accompanying src directory) was gen-
erated by datatool using the specifications from src/objects/general/general.asn. In order to

use the classes defined in the objects directories, your source code should begin with the state-
ments:

USING_NCBI_SCOPE;
using namespace objects;

All of the objects' header and implementation files are generated by datatool, as specified

in the ASN.1 specification files. The resulting object definitions however, are not in any way
dependent on ASN.1 format, as they simply specify the in-memory representation of the defined
data types. Accordingly, the objects themselves can be used to read, interpret, and write any type
of serialized data. Format specializations on the input stream are implemented via CObjec-
tIStream objects, which extract the required tags and values from the input data according to the
format specified. Similarly, Format specializations on an output stream are implemented via COb-
jectOStream objects.

Reading and writing serial data
Let's consider a program xml2asn.cpp that translates an XML data file containing an object of
type Biostruc, to ASN.1 text and binary formats. In main(), we begin by initializing the diagnostic
stream to write errors to a local file called xml2asn.log. (Exception handling, program tracing, and
error logging are described in the Diagnostic Streams section).

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/general/Date.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/general/general.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb1/mmdb1.asn

C++ Toolkit Book Data Serialization (ASN

15-32

An instance of the CTestAsn class is then created, and its member function AppMain() is
invoked. This function in turn calls CTestAsn::Run(). The first three lines of code there define the
XML input and ASN.1 output streams, using auto_ptrs, to ensure automatic destruction of these
objects.

Each stream is associated with data serialization mechanisms appropriate to the ESerial-
DataFormat provided to the constructor:

enum ESerialDataFormat {
 eSerial_None = 0,
 eSerial_AsnText = 1, // open ASN.1 text format
 eSerial_AsnBinary = 2, // open ASN.1 binary format
 eSerial_Xml = 3 // open XML format (not supported yet)
};

CObjectIStream and CObjectOStream are base classes which provide generic interfaces
between the specific type information of a serializable object and an I/O stream. The object
stream classes that will actually be instantiated by this application, CObjectIStreamXml, COb-
jectOStreamAsn, and CObjectOStreamAsnBinary, are descendants of these base classes.

Finally, a variable for the object type that will be generated from the input stream (in this case
a CBiostruc) is defined, and the CObject[I/O]Stream operators "<<" and ">>" are used to read
and write the serialized data to and from the object. (Note that it is not possible to simply "pass
the data through", from the input stream to the output stream, using a construct like: *inObject >>
*outObject). The CObject[I/O]Streams know nothing about the structure of the specific object -
they have knowledge only of the serialization format (text ASN, binary ASN, XML, etc.). In con-
trast, the CBiostruc knows nothing about I/O and serialization formats, but it contains explicit
type information about itself. Thus, the CObject[I/O]Streams can apply their specialized serializa-
tion methods to the data members of CBiostruc using the type information associated with that
object's class.

Determining Which Header Files to Include
As always, we include the corelib header files, ncbistd.hpp and ncbiapp.hpp. In addition, the

serial header files that define the generic CObject[IO]Stream objects are included, along with

serial.hpp, which defines generalized serialization mechanisms. Finally, we need to include the
header file for the object type we will be using.

There are two source browsers that can be used to locate the appropriate header file for a
particular object type. All class names in the NCBI C++ Toolkit begin with the letter "C". Using the
class hierarchy browser, we find CBiostruc, derived from CBiostruc_Base, which is in turn
derived from CObject. Following the CBiostruc link, we can then use the locate button to move to
the LXR source code navigator, and there, find the name of the header file. In this case, we find
CBiostruc.hpp is located in include/objects/mmdb1. Alternatively, if we know the name of the C++
class, the source code navigator's identifier search tool can be used directly. In summary, the
following #include statements appear at the top of xml2asn.cpp:

#include <CORELIB ncbistd.hpp>
#include <CORELIB ncbiapp.hpp>
#include <SERIAL serial.hpp>

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESerialDataFormat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESerialDataFormat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsn.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsn.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsnBinary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hierarchy.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident

C++ Toolkit Book Data Serialization (ASN

15-33

#include <SERIAL objistr.hpp>
#include <SERIAL objostr.hpp>
#include <OBJECTS Biostruc.hpp mmdb1>

Determining Which Libraries to Link To
Determining which libraries must be linked to requires a bit more work and may involve some trial
and error. The list of available libraries currently includes:

access biblio cdd featdef general medlars medline mmdb1 mmdb2 mmdb3 ncbimime objprt
proj pub pubmed seq seqalign seqblock seqcode seqfeat seqloc seqres seqset submit xcgi xcon-
nect xfcgi xhtml xncbi xser

It should be clear that we will need to link to the core library, xncbi, as well as to the serial

library, xser. In addition, we will need to link to whatever object libraries are entailed by using a

CBiostruc object. Minimally, one would expect to link to the mmdb libraries. This in itself is insuffi-

cient however, as the CBiostruc class embeds other types of objects, including PubMed cita-
tions, features, and sequences, which in turn embed additional objects such as Date. The
makefile for xml2asn.cpp, Makefile.xml2asn.app lists the libraries required for linking in the make
variable LIB.

##
###
This file was originally generated from by shell script "new_project.sh"
###
APP = xml2asn
OBJ = xml2asn
LIB = mmdb1 mmdb2 mmdb3 seqloc seqfeat pub medline biblio general xser
xncbi
LIBS = $(NCBI_C_LIBPATH) -lncbi $(ORIG_LIBS)

See also the example program, asn2asn.cpp which demonstrates more generalized transla-
tion of Seq-entry and Bioseq-set (defined in seqset.asn).

User-defined type information
The following topics are discussed in this section:

• Introduction

• Installing a GetTypeInfo() function: the BEGIN_/END_macros

• Specifying internal structure and class inheritance: the ADD_ macros

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDate.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqset/seqset.asn

C++ Toolkit Book Data Serialization (ASN

15-34

Introduction
Object type information, as it is used in the NCBI C++ Toolkit, is defined in the section on Run-
time Object Type Information. As described there, all of the classes and constructs defined in the
serial include and src directories have a static implementation of a GetTypeInfo() function that
yields a CTypeInfo for the object of interest. In this section, we describe how type information
can also be generated and accessed for user-defined types. We begin with a review of some of
the basic notions introduced in the previous discussion.

The type information for a class is stored outside any instances of that class, in a statically
created CTypeInfo object. A class's type information includes the class layout, inheritance rela-
tions, external alias, and various other attributes that are independent of specific instances. In
addition, the type information object provides an interface to the class's data members.

Limited type information is also available for primitive data types, enumerations, containers,
and pointers. The type information for a primitive type specifies that it is an int, float, or char,
etc., and whether or not that element is signed. Enumerations are a special kind of primitive type,
whose type information specifies its enumeration values and named elements. Type information
for containers can specify both the type of container and the type of elements. The type informa-
tion for a pointer provides convenient methods of access to the type information for the type
pointed to.

For all types, the type information is encoded in a static CTypeInfo object, which is then
accessed by all instances of a given type using a GetTypeInfo() function. For class types, this
function is implemented as a static method for the class. For non class types, GetTypeInfoXxx()
is implemented as a static global function, where Xxx is a unique suffix generated from the type's
name. With the first invocation of GetTypeInfo() for a given type, the static CTypeInfo object is
created, which then persists (local to the function GetTypeInfo()) throughout execution. Subse-
quent calls to GetTypeInfo() simply return a pointer to this statically created local object.

In order to make type information about user-defined classes accessible to your application,
the user-defined classes must also implement a static GetTypeInfo() method. A set of prepro-
cessor macros is available, which greatly simplifies this effort. A pre-requisite to using these
macros however, is that the class definition must include the following line:

DECLARE_INTERNAL_TYPE_INFO();

This pre-processor macro will generate the following in-line statement in the class definition:
static const NCBI_NS_NCBI::CTypeInfo* GetTypeInfo(void);

As with class objects, there must be some means of declaring the type information function
for an enumeration prior to using the macros which implement that function. Given an enumera-
tion named EMyEnum, DECLARE_ENUM_INFO(EMyEnum) will generate the following declara-
tion:

const CEnumeratedTypeValues* GetTypeInfo_enum_EMyEnum(void);

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetTypeInfo

C++ Toolkit Book Data Serialization (ASN

15-35

The DECLARE_ENUM_INFO() macro should appear in the header file where the enumeration

is defined, immediately following the definition. The DECLARE_INTERNAL_ENUM_INFO macro is

intended for usage with internal class definitions, as in:
class ClassWithEnum {

 enum EMyEnum {
 ...
 };

 DECLARE_INTERNAL_ENUM_INFO(EMyEnum);
 ...
};

The C++ Toolkit also allows one to provide type information for legacy C style struct and
choice elements defined in the C Toolkit. The mechanisms used to implement this are mentioned
but not described in detail here, as it is not likely that newly-defined types will be in these cate-
gories.

Installing a GetTypeInfo() function: the BEGIN_/END_macros
Several pre-processor macros are available for the installation of the GetTypeInfo() functions for
different types. Table 2 lists six BEGIN_NAMED_*_INFO macros, along with a description of the

type of object each can be applied to and its expected arguments. Each macro in Table 2 has a
corresponding END_*_INFO macro definition.

The first four macros in Table 2 apply to C++ objects. The DECLARE_INTERNAL_TYPE_INFO
() macro must appear in the class definition's public section. These macros take two string
arguments:

• an external alias for the type, and

• the internal C++ symbolic class name.

The external alias is required for serializable objects whose external name
differs from the internal C++ class name. For example, the external object
names specified in the ASN.1 modules (in src/objects) are prefixed with the letter
"C" in the corresponding C++ class names (e.g., Bioseq versus CBioseq). Each
of the "named" macros in Table 2 has a corresponding "unnamed" macro which
accepts the (unquoted) symbolic class name as one of its arguments, and gen-
erates a call to the corresponding "named" macro using a quoted string. For
example, BEGIN_CLASS_INFO is defined as:

#define BEGIN_CLASS_INFO(ClassName) \
 BEGIN_NAMED_CLASS_INFO(#ClassName, ClassName)

C++ Toolkit Book Data Serialization (ASN

15-36

The next two macros implement global, uniquely named functions which provide access to
type information for C++ enumerations; the resulting functions are named GetTypeInfo_enum_
[EnumName]. The DECLARE_ENUM_INFO() or DECLARE_ENUM_INFO_IN() macro should be

used in these cases to declare the GetTypeInfo*() functions.
The usage of these six macros generally takes the following form:
BEGIN_*_INFO(ClassName)

{
 ADD_*(MemberName);
 ADD_*(memberName);
 ...
}
END_*_INFO

That is, the BEGIN/END macros are used to generate the function's signature and enclosing

block, and various ADD_* macros are applied to add information about internal members and

class relations.

Table 2. BEGIN_NAMED_* Macro names and their usage

Macro name Used for Arguments

BEGIN_NAMED_CLASS_INFO Non-abstract class
object

ClassAlias, ClassName

BEGIN_NAMED_ABSTRACT_CLASS_INFO Abstract class object ClassAlias, ClassName
BEGIN_NAMED_DERIVED_CLASS_INFO Derived subclass

object
ClassAlias, ClassName,

BaseClassName
BEGIN_NAMED_CHOICE_INFO C++ class choice

object
ClassAlias, ClassName

BEGIN_NAMED_ENUM_INFO Enum object EnumAlias, EnumName,
IsInteger

BEGIN_NAMED_ENUM_IN_INFO internal Enum object EnumAlias, CppContext,
EnumName, IsInteger

• BEGIN_NAMED_CLASS_INFO(ClassAlias, ClassName)BEGIN_CLASS_INFO
(ClassName) These macros should be used on classes that do not contain any pure vir-

tual functions. For example, the GetTypeInfo() method for the CPerson class (used in the
chapter on iterators) can be implemented as:
BEGIN_NAMED_CLASS_INFO("CPerson", CPerson)
{
 ADD_NAMED_STD_MEMBER("m_Name", m_Name);
 ADD_NAMED_STD_MEMBER("m_Addr", m_Addr);
 ADD_NAMED_MEMBER("m_NextDoor", m_NextDoor, POINTER, (CLASS, (CPerson)));
}
END_CLASS_INFO

or, equivalently, as:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_CLASS_INFO

C++ Toolkit Book Data Serialization (ASN

15-37

BEGIN_CLASS_INFO(CPerson)
{
 ADD_STD_MEMBER(m_Name);
 ADD_STD_MEMBER(m_Addr);
 ADD_MEMBER(m_NextDoor, POINTER, (CLASS, (CPerson)));
}
END_CLASS_INFO

Here, the CPerson class has two string data members, m_Name and m_Addr, as well as

a pointer to an object of the same type (CPerson*). All built-in C++ types such as int,
float, string etc., use the ADD_NAMED_STD_MEMBER or ADD_STD_MEMBER macros. These

and other macros used to add members are defined in Specifying internal structure and
class inheritance: the ADD_ macros and Table 3.

• BEGIN_NAMED_ABSTRACT_CLASS_INFO(ClassAlias, ClassName)
BEGIN_ABSTRACT_CLASS_INFO(ClassName) These macros must be used on abstract

base classes which contain pure virtual functions. Because these abstract classes cannot
be instantiated, special handling is required in order to install their static GetTypeInfo()
methods.

• BEGIN_NAMED_DERIVED_CLASS_INFO(ClassAlias, ClassName, BaseClass-
Name)BEGIN_DERIVED_CLASS_INFO(ClassName, BaseClassName) These macros

should be used on derived subclasses whose parent classes also have the GetTypeInfo()
method implemented. Data members inherited from parent classes should not be included
in the derived class type information.
BEGIN_DERIVED_CLASS_INFO(CA, CBase)
{
 // ... data members in CA not inherited from CBase
}
END_DERIVED_CLASS_INFO
BEGIN_DERIVED_CLASS_INFO(CB, CBase)
{
 // ... data members in CB not inherited from CBase
}
END_DERIVED_CLASS_INFO

NOTE:The type information for classes derived directly from CObject does not however,
follow this protocol. In this special case, although the class is derived from CObject, you
should not use the DERIVED_CLASS macros to implement GetTypeInfo(), but instead use

the usual BEGIN_CLASS_INFO macro. CObject's have a slightly different interface to their

type information (see CObjectGetTypeInfo), and apply these macros differently.

• BEGIN_NAMED_CHOICE_INFO(ClassAlias, ClassName)BEGIN_CHOICE_INFO
(ClassName) These macros install GetTypeInfo() for C++choice objects, which are

implemented as C++ classes. See Choice objects in the C++ Toolkit for a description of C+
+ choice objects. Each of the choice variants occurs as a data member in the class, and

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ABSTRACT_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_ABSTRACT_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_DERIVED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_DERIVED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_DERIVED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CObjectGetTypeInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_CHOICE_INFO%20class=
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_CHOICE_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_CHOICE_INFO

C++ Toolkit Book Data Serialization (ASN

15-38

the macros used to add choice variants (ADD_NAMED_%20_CHOICE_VARIANT) are used

similarly to those which add data members to classes (see discussion of the ADD* macros

below).

• BEGIN_NAMED_ENUM_INFO(EnumAlias, EnumName, IsInteger)
BEGIN_ENUM_INFO(EnumName, IsInteger) In addition to the two arguments used by

the BEGIN_*_INFO macros for classes, a Boolean argument (IsInteger) indicates whether

or not the enumeration includes arbitrary integer values or only those explicitly specified.

• BEGIN_NAMED_ENUM_IN_INFO(EnumAlias, CppContext, EnumName, IsInte-
ger)BEGIN_ENUM_IN_INFO(CppContext, EnumName, IsInteger) These macros

also implement the type information functions for C++ enumerations --but in this case, the
enumeration is defined outside the scope where the macro is applied, so a context argu-
ment is required. This new argument, CppContext, specifies the C++ class name or
external namespace where the enumeration is defined.

Again, when using the above macros to install type information, the corresponding class defi-
nitions must include a declaration of the static class member function GetTypeInfo() in the
class's public section. The DECLARE_INTERNAL_TYPE_INFO() macro is provided to ensure

that the declaration of this method is correct. Similarly, the DECLARE_INTERNAL_ENUM_INFO
and DECLARE_ENUM_INFO macros should be used in the header files where enumerations are

defined. The DECLARE_ASN_TYPE_INFO and DECLARE_ASN_CHOICE_INFO macros can be

used to declare the type information functions for C-style structs and choice nodes.

Specifying internal structure and class inheritance: the ADD_ macros
Information about internal class structure and inheritance is specified using the ADD_* macros

(see Table 3). Again, each macro has both a "named" and "unnamed" implementation. The
arguments to all of the ADD_NAMED_* macros begin with the external alias and C++ name of
the item to be added.

The ADD_* macros that take only an alias and a name require that the type being added
must be either a built-in type or a type defined by the name argument. When adding a CRef data
member to a class or choice object however, the class referenced by the CRef must be made
explicit with the RefClass argument, which is the C++ class name for the type pointed to.

Similarly, when adding an enumerated data member to a class, the enumeration itself must
be explicitly named. For example, if class CMyClass contains a data member m_MyEnumVal of

type EMyEnum, then the BEGIN_NAMED_CLASS_INFO macro for CMyClass should contain
the statement:

ADD_ENUM_MEMBER (m_MyEnumVal, EMyEnum);

or, equivalently:
ADD_NAMED_ENUM_MEMBER ("m_MyEnumVal", m_MyEnumVal, EMyEnum);

or, to define a "custom" (non-default) external alias:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ADD_NAMED_CHOICE_VARIANT
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ENUM_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_ENUM_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ENUM_IN_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ENUM_IN_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_ENUM_IN_INFO

C++ Toolkit Book Data Serialization (ASN

15-39

ADD_NAMED_ENUM_MEMBER ("m_CustomAlias", m_MyEnumVal, EMyEnum);

Here, EMyEnum is defined in the same namespace and scope as CMyClass. Alternatively, if
the enumeration is defined in a different class or namespace (and therefore, then the
ADD_ENUM_IN_MEMBER macro must be used:

ADD_ENUM_IN_MEMBER (m_MyEnumVal, COtherClassName::, EMyEnum);

In this example, EMyEnum is defined in a class named COtherClassName. The CppCon-
text argument (defined here as COtherClassName::) acts as a scope operator, and can also be
used to specify an alternative namespace. The ADD_NAMED_ENUM_CHOICE_VARIANT and
ADD_NAMED_ENUM_IN_CHOICE_VARIANT macros are used similarly to provide information
about enumerated choice options. The ADD_ENUM_VALUE macro is used to add enumerated val-

ues to the enumeration itself, as demonstrated in the above example of the
BEGIN_NAMED_ENUM_INFO macro.

Table 3. ADD_* Macros and their usage

Macro name Usage Arguments

ADD_NAMED_STD_MEMBER Add a standard data
member to a class

MemberAlias, Member-
Name

ADD_NAMED_CLASS_MEMBER Add an internal class
member to a class

MemberAlias, Member-
Name

ADD_NAMED_SUB_CLASS Add a derived subclass
to a class

SubClassAlias, Sub-
ClassName

ADD_NAMED_REF_MEMBER Add a CRef data
member to a class

MemberAlias, Member-
Name, RefClass

ADD_NAMED_ENUM_MEMBER Add an enumerated
data member to a
class

MemberAlias, Member-
Name, EnumName

ADD_NAMED_ENUM_IN_MEMBER Add an externally
defined enumerated
data member to a
class

MemberAlias, Member-
Name, CppContext,
EnumName

ADD_NAMED_MEMBER Add a data member of
the type specified by
TypeMacro to a
class

MemberAlias, Member-
Name, TypeMacro,
TypeMacroArgs

ADD_NAMED_STD_CHOICE_VARIANT Add a standard variant
type to a C++ choice
object

VariantAlias, VariantName

ADD_NAMED_REF_CHOICE_VARIANT Add a CRef variant to a
C++ choice object

VariantAlias, Variant-
Name, RefClass

ADD_NAMED_ENUM_CHOICE_VARIANT Add an enumeration
variant to a C++
choice object

VariantAlias, Variant-
Name, EnumName

C++ Toolkit Book Data Serialization (ASN

15-40

Macro name Usage Arguments

ADD_NAMED_ENUM_IN_CHOICE_VARIANT Add an enumeration
variant to a C++
choice object

VariantAlias, Variant-
Name, CppContext,
EnumName

ADD_NAMED_CHOICE_VARIANT Add a variant of the
type specified by
TypeMacro to a C+
+ choice object

VariantAlias, Variant-
Name, TypeMacro,
TypeMacroArgs

ADD_ENUM_VALUE Add a named enumera-
tion value to an
enum

EnumValName, Value

The most complex macros by far are those which use the TypeMacro and TypeMacroArgs
arguments: ADD(_NAMED)_MEMBER and ADD(_NAMED)_CHOICE_VARIANT. These macros are

more open-ended and allow for more complex specifications. We have already seen one example
of using a macro of this type, in the implementation of the GetTypeInfo() method for CPerson:

ADD_MEMBER(m_NextDoor, POINTER, (CLASS, (CPerson)));

The ADD_MEMBER and ADD_CHOICE_VARIANT macros always take at least two arguments:

1. the internal member (variant) name

2. the definition of the member's (variant's) type

Depending on the (second) TypeMacro argument, additional arguments may or may not be

needed. In this example, the TypeMacro is POINTER, which does require additional arguments.

The TypeMacroArgs here specify that m_NextDoor is a pointer to a class type whose C++

name is CPerson.
More generally, the remaining arguments depend on the value of TypeMacro, as these

parameters complete the type definition. The possible strings which can occur as TypeMacro,

along with the additional arguments required for that type, are given in Table 4.

Table 4. Type macros and their arguments

TypeMacro TypeMacroArgs

CLASS (ClassName)
STD (C++ type)
StringStore ()
null ()
ENUM (EnumType, EnumName)
POINTER (Type,Args)
STL_multiset (Type,Args)
STL_set (Type,Args)

C++ Toolkit Book Data Serialization (ASN

15-41

TypeMacro TypeMacroArgs

STL_multimap (KeyType,KeyArgs,ValueType,ValueArgs)
STL_map (KeyType,KeyArgs,ValueType,ValueArgs)
STL_list (Type,Args)
STL_list_set (Type,Args)
STL_vector (Type,Args)
STL_CHAR_vector (C++ Char type)
STL_auto_ptr (Type,Args)
CHOICE (Type,Args)

The ADD_MEMBER macro generates a call to the corresponding ADD_NAMED_MEMBER macro

as follows:
#define ADD_MEMBER(MemberName,TypeMacro,TypeMacroArgs) \

 ADD_NAMED_MEMBER(#MemberName,MemberName,TypeMacro,TypeMacroArgs)

Some examples of using the ADD_MEMBER macro are:
ADD_MEMBER(m_X);

ADD_MEMBER(m_A, STL_auto_ptr, (CLASS, (ClassName)));
ADD_MEMBER(m_B, STL_CHAR_vector, (char));
ADD_MEMBER(m_C, STL_vector, (STD, (int)));
ADD_MEMBER(m_D, STL_list, (CLASS, (ClassName)));
ADD_MEMBER(m_E, STL_list, (POINTER, (CLASS, (ClassName))));
ADD_MEMBER(m_F, STL_map, (STD, (long), STD, (string)));

Similarly, the ADD_CHOICE_VARIANT macro generates a call to the corresponding

ADD_NAMED_CHOICE_VARIANT macro. These macros add type information for the choice

object's variants.

Runtime Object Type Information
The following topics are discussed in this section:

• Introduction

• Motivation

• Object Information Classes

• Usage of object type information

Introduction
Run-time information about data types is necessary in several contexts, including:

1. When reading, writing, and processing serialized data, where runtime information about a
type's internal structure is needed

C++ Toolkit Book Data Serialization (ASN

15-42

2. When reading from an arbitrary data source, where data members' external aliases must
be used to locate the corresponding class data members (e.g.MyXxx may be aliased as
my-xxx in the input data file)

3. When using a generalized C++ type iterator to traverse the data members of an object

4. When accessing the object type information per se (without regard to any particular
object instance), e.g. to dump it to a file as ASN.1 or DTD specifications (not data)

In the first three cases above, it is necessary to have both the object itself as well as its run-
time type information. This is because in these contexts, the object is usually passed inside a
generic function, as a pointer to its most base parent type CObject. The runtime type information
is needed here, as there is no other way to ascertain the actual object's data members. In addi-
tion to providing this information, a runtime type information object provides an interface for
accessing and modifying these data members.

In the last case (4) above, the type information is used independent of any actual object
instances.

The NCBI C++ Toolkit uses two classes to support these requirements:

• Type information classes (base class >CTypeInfo) are intended for internal usage only,
and they encode information about a type, devoid of any instances of that type. This infor-
mation includes the class layout, inheritance relations, external alias, and various other
attributes such as size, which are independent of specific instances. Each data member of
a class also has its own type information. Thus, in addition to providing information rele-
vant to the member's occurrence in the class (e.g. the member name and offset), the type
information for a class must also provide access to the type information for each of its
members. Limited type information is also available for types other than classes, such as
primitive data types, enumerations, containers, and pointers. For example, the type infor-
mation for a primitive type specifies that it is an int, float, or char, etc., and whether or not
that element is signed. Enumerations are a special kind of primitive type, whose type
information specifies its enumeration values and named elements. Type information for
containers specifies both the type of container and the type of elements that it holds.

• Object information classes (base class CObjectTypeInfo) include a pointer to the type
information as well as a pointer to the object instance, and provide a safe interface to that
object. In situations where type information is used independent of any concrete object, the
object information class simply serves as a wrapper to a type information object. Where
access to an object instance is required, the object pointer provides direct access to the
correctly type-cast instance, and the interface provides methods to access and/or modify
the object itself or members of that object.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCTypeInfo.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectTypeInfo.html

C++ Toolkit Book Data Serialization (ASN

15-43

The C++ Toolkit stores the type information outside any instances of that type, in a statically
created CTypeInfo object. For class objects, this CTypeInfo object can be accessed by all
instances of the class via a static GetTypeInfo() class method. Similarly, for primitive types and
other constructs that have no way of associating methods with them per se, a static globally
defined GetTypeInfoXxx() function is used to access a static CTypeInfo object. (The Xxx suffix
is used here to indicate that a globally unique name is generated for the function).

All of the automatically generated classes and constructs defined in the C++ Toolkit's objects/
directory already have static GetTypeInfo() functions implemented for them. In order to make
type information about user-defined classes and elements also accessible, you will need to
implement static GetTypeInfo() functions for these constructs. A number of pre-processor
macros are available to support this activity, and are described in the section on User-defined
Type Information.

Type information is often needed when the object itself has been passed anonymously, or as
a pointer to its parent class. In this case, it is not possible to invoke the GetTypeInfo() method
directly, as the object's exact type is unknown. Using a <static_cast> operator to enable the
member function is also unsafe, as it may open the door to incorrectly associating an object's
pointer with the wrong type information. For these reasons, the CTypeInfo class is intended for
internal usage only, and it is the CObjectTypeInfo classes that provide a more safe and friendly
user interface to type information.

Motivation
We use a simple example to help motivate the use of this type and object information model. Let
us suppose that we would like to have a generic function LoadObject(), which can populate an
object using data read from a flat file. For example, we might like to have:
bool LoadObject(Object& myObj, istream& is);

where myObj is an instance of some subclass of Object. Assuming that the text in the file is

of the form:
MemberName1 value1

MemberName5 value5
MemberName2 value2
:

we would like to find the corresponding data member in myObj for each MemberName, and

set that data member's value accordingly. Unfortunately, myObj cannot directly supply any useful

type information, as the member names we seek are for a specific subclass of Object. Now sup-
pose that we have an appropriate type information object available for myObj, and consider how

this might be used:

bool LoadObject(TypeInfo& info, Object& myObj, istream& is)
{
 string myName, myValue;

 while (!is.eof()) {
 is >> myName >> myValue;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetTypeInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/

C++ Toolkit Book Data Serialization (ASN

15-44

 void* member = FindMember(info, myObj, myName);
 AssignValue(member, myValue);
 }
}

Here, we assume that our type information object, info, stores information about the mem-

ory offset of each data member in myObj, and that such information can be retrieved using some

sort of identifying member name such as myName. This is not too difficult to imagine, and indeed,

this is exactly the type of information and facility provided by the C++ Toolkit's type information
classes. The FindMember() function just needs to return a void pointer to the appropriate loca-
tion in memory. The AssignValue() function presents a much greater challenge however, as its
two sole arguments are a void pointer and a string. This would be fine if the data member was
indeed a void pointer, and a string value was acceptable. In general this is not the case, and
stronger methods are clearly needed.

In particular, for each data member encountered, we need to retrieve the type of that member
as well as its location in memory, so as to process myValue appropriately before assigning it. In

addition, we need safer mechanisms for making such "untyped" assignments. Ideally, we would
like a FindMember() function that returns a correctly cast pointer to that data member, along with
its associated type information. This is what the object information classes provide - a pointer to
the object instance as well as a pointer to its static type information. The interface to the object
information class also provides a number of methods such as GetClassMember(), GetTypeFam-
ily(), SetPrimitiveValue(), etc., to support the type of activity described above.

Object Information Classes
The following topics are discussed in this section:

• CObjectTypeInfo (*)

• CConstObjectInfo (*)

• CObjectInfo (*)

CObjectTypeInfo (%20)
This is the base class for all object information classes. It is intended for usage where there is no
concrete object being referenced, and all that is required is access to the type information. A
CObjectTypeInfo contains a pointer to a low-level CTypeInfo object, and functions as a user-
friendly wrapper class.

The constructor for CObjectTypeInfo takes a pointer to a const CTypeInfo object as its sin-
gle argument. This is precisely what is returned by all of the static GetTypeInfo() functions. Thus,
to create a CObjectTypeInfo for the CBioseq class - without reference to any particular instance
of CBioseq - one might use:

CObjectTypeInfo objInfo(CBioseq::GetTypeInfo());

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectTypeInfo.html

C++ Toolkit Book Data Serialization (ASN

15-45

One of the most important methods provided by the CObjectTypeInfo class interface is Get-
TypeFamily(), which returns an enumerated value indicating the type family for the object of
interest. Five type families are defined by the ETypeFamily enumeration:

ETypeFamily GetTypeFamily(void) const;
 enum ETypeFamily {
 eTypeFamilyPrimitive,
 eTypeFamilyClass,
 eTypeFamilyChoice,
 eTypeFamilyContainer,
 eTypeFamilyPointer
};

Different queries become appropriate depending on the ETypeFamily of the object. For
example, if the object is a container, one might need to determine the type of container (e.g.
whether it is a list, map etc.), and the type of element. Similarly, if an object is a primitive type (e.
g. int, float, string, etc.), an appropriate query becomes what the value type is, and in the case
of integer-valued types, whether or not it is signed. Finally, in the case of more complex objects
such as class and choice objects, access to the type information for the individual data members
and choice variants is needed. The following methods are included in the CObjectTypeInfo inter-
face for these purposes:

• GetTypeFamily() == eTypeFamilyPrimitive:

• EPrimitiveValueType GetPrimitiveValueType(void) const;

• bool IsPrimitiveValueSigned(void) const;

• GetTypeFamily() == eTypeFamilyClass:

• CMemberIterator BeginMembers(void) const;

• CMemberIterator FindMember(const string& memberName) const;

• CMemberIterator FindMemberByTag(int memberTag) const;

• GetTypeFamily() == eTypeFamilyChoice:

• CVariantIterator BeginVariants(void) const;

• CVariantIterator FindVariant(const string& memberName) const;

• CVariantIterator FindVariantByTag(int memberTag) const;

• GetTypeFamily() == eTypeFamilyContainer:

• EContainerType GetContainerType(void) const;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ETypeFamily

C++ Toolkit Book Data Serialization (ASN

15-46

• CObjectTypeInfo GetElementType(void) const;

• GetTypeFamily() == eTypeFamilyPointer:

• CObjectTypeInfo GetPointedType(void) const;

The two additional enumerations referred to here, EContainerType and EPrimitiveValue-
Type, are defined, along with ETypeFamily, in include/serial/serialdef.hpp.

Different iterator classes are used for iterating over class data members versus choice variant
types. Thus, if the object of interest is a C++ class object, then access to the type information for
its members can be gained using a CObjectTypeInfo::CMemberIterator. The BeginMembers()
method returns a CMemberIterator pointing to the first data member in the class; the FindMem-
ber*() methods return a CMemberIterator pointing to a data member whose name or tag
matches the input argument. The CMemberIterator class is a forward iterator whose operators
are defined as follows:

• the ++ operator increments the iterator (makes it point to the next class member)

• the () operator tests that the iterator has not exceeded the legitimate range

• the * dereferencing operator returns a CObjectTypeInfo for the data member the iterator
currently points to

Similarly, the BeginVariants() and FindVariant() methods allow iteration over the choice
variant data types for a choice class, and the dereferencing operation yields a CObjectTypeInfo
object for the choice variant currently pointed to by the iterator.

CConstObjectInfo (%20)
The CConstObjectInfo (derived from CObjectTypeInfo) adds an interface to access the particu-
lar instance of an object (in addition to the interface inherited from CObjectTypeInfo, which pro-
vides access to type information only). It is intended for usage with const instances of the object
of interest, and therefore the interface does not permit any modifications to the object. The con-
structor for CConstObjectInfo takes two arguments:
CConstObjectInfo(const void* instancePtr, const CTypeInfo* typeinfoPtr);

(Alternatively, the constructor can be invoked with a single STL pair containing these two
objects.)

Each CConstObjectInfo contains a pointer to the object's type information as well as a
pointer to an instance of the object. The existence or validity of this instance can be checked
using any of the following CConstObjectInfo methods and operators:

• bool Valid(void) const;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EContainerType
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EPrimitiveValueType
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EPrimitiveValueType
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/serialdef.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCConstObjectInfo.html

C++ Toolkit Book Data Serialization (ASN

15-47

• operator bool(void) const;

• bool operator!(void) const;

For primitive type objects, the CConstObjectInfo interface provides access to the currently
assigned value using GetPrimitiveValueXxx(). Here, Xxx may be Bool, Char, Long, ULong,

Double, String, ValueString, or OctetString. In general, to get a primitive value, one first applies a
switch statement to the value returned by GetPrimitiveValueType(), and then calls the appropri-
ate GetPrimitiveValueXxx() method depending on the branch followed, e.g.:

switch (obj.GetPrimitiveValueType()) {
case ePrimitiveValueBool:
 bool b = obj.GetPrimitiveValueBool();
 break;

case ePrimitiveValueInteger:
 if (obj.IsPrimitiveValueSigned()) {
 long l = obj.GetPrimitiveValueLong();
 } else {
 unsigned long ul = obj.GetPrimitiveValueULong();
 }
 break;
 //... etc.
}

Member iterator methods are also defined in the CConstObjectInfo class, with a similar
interface to that found in the CObjectTypeInfo class. In this case however, the dereferencing
operators return a CConstObjectInfo object - not a CObjectTypeInfo object - for the current
member. For C++class objects, these member functions are:

• CMemberIterator BeginMembers(void) const;

• CMemberIterator FindClassMember(const string& memberName) const;

• CMemberIterator FindClassMemberByTag(int memberTag) const;

For C++ choice objects, only one variant is ever selected, and only that choice variant is
instantiated. As it does not make sense to define a CConstObjectInfo iterator for uninstantiated
variants, the method GetCurrentChoiceVariant() is provided instead. The dereferencing opera-
tor (*) can be applied to the object returned by this method to obtain a CConstObjectInfo for the
variant. Of course, type information for unselected variants can still be accessed using the COb-
jectTypeInfo methods.

The CConstObjectInfo class also defines an element iterator for container type objects.
CConstObjectInfo::CElementIterator is a forward iterator whose interface includes increment
and testing operators. Dereferencing is implemented by the iterator's GetElement() method,
which returns a CConstObjectInfo for the element currently pointed to by the iterator.

C++ Toolkit Book Data Serialization (ASN

15-48

Finally, for pointer type objects, the type returned by the method GetPointedObject() is also
a CConstObjectInfo for the object - not just a CObjectTypeInfo.

CObjectInfo (%20)
The CObjectInfo class is in turn derived from CConstObjectInfo, and is intended for usage with
mutable instances of the object of interest. In addition to all of the methods inherited from the
parent class, the interface to this class also provides methods that allow modification of the object
itself or its data members.

For primitive type objects, a set of SetPrimitiveValueXxx() methods are available, compli-
mentary to the GetPrimitiveValueXxx() methods described above. Methods that return member
iterator objects are again reimplemented, and the de-referencing operators now return a COb-
jectInfo object for that data member. As the CObjectInfo now points to a mutable object, these
iterators can be used to set values for the data member. Similarly, GetCurrentChoiceVariant()
now returns a CObjectInfo, as does CObjectInfo::CElementIterator::GetElement().

Usage of object type information
We can now reconsider how our LoadObject() function might be implemented using the COb-
jectInfo class:
bool LoadObject(CObjectInfo& info, CNcbiIStream& is)
{
 string alias, myValue;

 while (!is.eof()) {
 is >> alias >> myValue;

 CObjectInfo dataMember(*info.FindClassMember(alias));
 if (!dataMember) {
 ERR_POST(ERROR, "Couldn't find member named:" << alias);
 }
 SetValue(dataMember, myValue);
 }
}

Here, info contains pointers to the CObject itself as well as to its associated CTypeInfo
object. For each member alias read from the file, we apply FindClassMember(alias), and derefer-
ence the returned iterator to retrieve a CObjectInfo object for that member. We then use the
operator () to verify that the member was located, and if so, use the member's CObjectInfo to set
a value in the function SetValue():

void SetValue(const CObjectInfo& obj, const string value)
{
 if (obj.GetTypeFamily() == eTypeFamilyPrimitive) {

 switch (obj.GetPrimitiveValueType()) {

 case ePrimitiveValueBool:
 obj.SetPrimitiveValueBool (atoi (value.c_str()));
 break;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectInfo.html

C++ Toolkit Book Data Serialization (ASN

15-49

 case ePrimitiveValueChar:
 obj.SetPrimitiveValueChar (value.c_str()[0]);
 break;

 //... etc
 }
 } else {
 ERR_POST(ERROR, "Attempt to assign non-primitive from string:" << value);
 }
}

In this example, SetValue() can only assign primitive types. More generally however, the
CObjectInfo class allows the assignment of more complex types that are simply not implemented
here. Note also that the arguments to SetValue() are const, even though the function does mod-
ify the value of the data instance pointed to. In particular, the type const CObjectInfo should not
be confused with the type CConstObjectInfo. The former specifies that object information con-
struct is non-mutable, although the instance it points to can be modified. The latter specifies that
the instance itself is non-mutable.

In addition to user-specific applications of the type demonstrated in this example, the generic
implementations of the C++ type iterators and the CObject[IO]Streamclass methods provide
excellent examples of how runtime object type information can be deployed.

As a final example of how type information might be used, we consider an application whose
simple task is to translate a data file on an input stream to a different format on an output stream.
One important use of the object classes defined in include/objects is the hooks and parsing
mechanisms available to applications utilizing CObject[IO]Streams. The stream objects special-
ize in different formats (such as XML or ASN.1), and must work in concert with these type-specific
object classes to interpret or generate serialized data. In some cases however, the dynamic
memory allocation required for large objects may be substantial, and it is preferable to avoid
actually instantiating a whole object all at once.

Instead, it is possible to use the CObjectStreamCopier class, described in CObject[IO]
Streams. Briefly, this class holds two CObject[IO]Stream data members pointing to the input
and output streams, and a set of Copy methods which take a CTypeInfo argument. Using this
class, it is easy to translate files between different formats; for example:

auto_ptr<CObjectIStream> in(CObjectIStream::Open("mydata.xml",eSerial_Xml));
auto_ptr<CObjectOStream> out(CObjectOStream::Open("mydata.asn",eSerial_AsnBinary));
CObjectStreamCopier copier(*in, *out);
copier.Copy (CBioseq_set::GetTypeInfo());

copies a CBioseq_set encoded in XML to a new file, reformatted in ASN.1 binary format.

Choice objects in the NCBI C++ Toolkit
The following topics are discussed in this section:

• Introduction

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectStreamCopier.html

C++ Toolkit Book Data Serialization (ASN

15-50

• C++ choice objects

Introduction
The datatool program processes the ASN.1 specification files (*.asn) in the src/objects/ directo-

ries to generate the associated C++ class definitions. The corresponding program implemented in
the C Toolkit, asntool, used the ASN.1 specifications to generate C enums, structs, and func-

tions. In contrast, datatool must generate C++ enums, classes and methods. In addition, for

each defined object type, datatool must also generate the associated type information method

or function.
There is a significant difference in how these two tools implement ASN.1 choice elements. As

an example, consider the following ASN.1 specification:
Object-id ::= CHOICE {

 id INTEGER,
 str VisibleString
}

The ASN.1 choice element specifies that the corresponding object may be any one of the
listed types. In this case, the possible types are an integer and a string. The approach used in
asntool was to implement all choice objects as ValNodes, which were in turn defined as:

typedef struct valnode {
 unsigned choice;
 DataVal data;
 struct valnode *next;
} ValNode;

The DataVal field is a union, which may directly store numerical values, or alternatively, hold
a void pointer to a character string or C struct. Thus, to process a choice element in the C
Toolkit, one could first retrieve the choice field to determine how the data should be interpreted,
and subsequently, retrieve the data via the DataVal field. In particular, no explicit implementation
of individual choice objects was used, and it was left to functions which manipulate these ele-
ments to enforce logical consistency and error checking for legitimate values. A C struct which
included a choice element as one of its fields merely had to declare that element as type ValN-
ode. This design was further complicated by the use of a void pointer to store non-primitive types
such as structs or character strings.

In contrast, the C++ datatool implementation of choice elements defines a class with built-

in, automatic error checking for each choice object. The usage of CObject class hierarchy (and
the associated type informationmethods) solves many of the problems associated with working
with void pointers.

C++ choice objects
The classes generated by datatool for choice elements all have the following general structure:
class C[AsnChoiceName] : public CObject
{
public:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/

C++ Toolkit Book Data Serialization (ASN

15-51

 ... // constructors and destructors
 DECLARE_INTERNAL_TYPE_INFO(); // declare GetTypeInfo() method
 enum E_Choice { // enumerate the class names
 e_not_set, // for the choice variants
 e_Xxx,
 ...
 };
 typedef CXxx TXxx; // typedef each variant class
 ...
 virtual void Reset(void); // reset selection to none
 E_Choice Which(void) const; // return m_choice
 void Select(E_Choice index, // change the current selection
 EResetVariant reset);
 static string SelectionName(E_Choice index);
 bool IsXxx(void) const; // true if m_choice == eXxx
 CXxx& GetXxx(void);
 const CXxx& GetXxx(void) const;
 CXxx& SetXxx(void);
 void SetXxx(const CRef<CXxx>& ref);
 ...
private:
 E_Choice m_choice; // choice state
 union {
 TXxx m_Xxx;
 ...
 };
 CObject *m_object; // variant's data
 ...
};

For the above ASN.1 specification, datatool generates a class named CObject_id, which

is derived from CObject. For each choice variant in the specification, an enumerated value (in
E_Choice), and an internal typedef are defined, and a declaration in the union data member is
made. For this example then, we would have:

enum E_Choice {
 e_not_set,
 e_Id,
 e_Str
};
...
typedef int TId;
typedef string TStr;
...
union {
 TId m_Id;
 string *m_string;
};

In this case both of the choice variants are C++ built-in types. More generally however, the
choice variant types may refer to any type of object. For convenience, we refer to their C++ type
names here as "CXxx",

C++ Toolkit Book Data Serialization (ASN

15-52

Two private data members store information about the currently selected choice variant:
m_choice holds the enum value, and m_Xxx holds (or points to a CObject containing) the vari-

ant's data. The choice object's member functions provide access to these two data members.
Which() returns the currently selected variant's E_Choice enum value. Each choice variant has
its own Get() and Set() methods. Each GetXxx() method throws an exception if the variant type
for that method does not correspond to the current selection type. Thus, it is not possible to
unknowingly retrieve the incorrect type of choice variant.

Select(e_Xxx) uses a switch(e_Xxx) statement to initialize m_Xxx appropriately, sets

m_choice to e_Xxx, and returns. Two SetXxx() methods are defined, and both use this Select()
method. SetXxx() with no arguments calls Select(e_Xxx) and returns m_Xxx (as initialized by

Select()). SetXxx(TXxx& value) also calls Select(e_Xxx) but resets m_Xxx to value before

returning.
Some example choice objects in the C++ Toolkit are:

• CDate

• CInt_fuzz

• CObject_id

• CPerson_id

• CAnnotdesc

• CSeq_annot

Traversing a Data Structure
The following topics are discussed in this section:

• Locating the Class Definitions

• Accessing and Referencing Data Members

• Traversing a Biostruc

• Iterating Over Containers

Locating the Class Definitions
In general, traversing through a class object requires that you first become familiar with the inter-
nal class structure and member access functions for that object. In this section we consider how
you can access this information in the source files, and apply it. The example provided here
involves a Biostruc type which is implemented by class CBiostruc, and its base (parent) class,
CBiostruc_Base.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDate.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCInt__fuzz.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject__id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCPerson__id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCAnnotdesc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCSeq__annot.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__Base.html

C++ Toolkit Book Data Serialization (ASN

15-53

The first question is: how do I locate the class definitions implementing the object to be tra-
versed? There are now two source browsers which you can use. To obtain a synopsis of the
class, you can search the index or the class hierarchy of the Doc++ browser and follow a link to
the class. For example, a synopsis of the CBiostruc class is readily available. From this page,
you can also access the relevant source files archived by theLXR browser, by following the
Locate CBiostruc link. Alternatively, you may want to access the LXR engine directly by using the
Identifier search tool.

Because we wish to determine which headers to include, the synopsis displayed by the Iden-
tifier search tool is most useful. There we find a single header file, Biostruc.hpp, listed as defining
the class. Accordingly, this is the header file we must include. The CBiostruc class inherits from
the CBiostruc_Base class however, and we will need to consult that file as well to understand
the internal structure of the CBiostruc class. Following a link to the parent class from the class
hierarchy browser, we find the definition of the CBiostruc_Base class.

This is where we must look for the definitions and access functions we will be using. How-
ever, it is the derived user class (CBiostruc) whose header should be #include'd in your source
files, and which should be instantiated by your local program variable. For a more general discus-
sion of the relationship between the base parent objects and their derived user classes, see
Working with the serializable object classes.

Accessing and Referencing Data Members
Omitting some of the low-level details of the base class, we find the CBiostruc_Base class has
essentially the following structure:
class CBiostruc_Base : public CObject
{
public:
 // type definitions
 typedef list< CRef<CBiostruc_id> > TId;
 typedef list< CRef<CBiostruc_descr> > TDescr;
 typedef list< CRef<CBiostruc_feature_set> > TFeatures;
 typedef list< CRef<CBiostruc_model> > TModel;
 typedef CBiostruc_graph TChemical_graph;
 // Get() members
 const TId& GetId(void) const;
 const TDescr& GetDescr(void) const;
 const TChemical_graph& GetChemical_graph(void) const;
 const TFeatures& GetFeatures(void) const;
 const TModel& GetModel(void) const;
 // Set() members
 TId& SetId(void);
 TDescr& SetDescr(void);
 TChemical_graph& SetChemical_graph(void);
 TFeatures& SetFeatures(void);
 TModel& SetModel(void);
private:
 TId m_Id;
 TDescr m_Descr;
 TChemical_graph m_Chemical_graph;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classes.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hierarchy.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__Base.html

C++ Toolkit Book Data Serialization (ASN

15-54

 TFeatures m_Features;
 TModel m_Model;
};

With the exception of the structure's chemical graph, each of the class's private data mem-
bers is actually a list of references (pointers), as specified by the type definitions. For example,
TId is a list of CRef objects, where each CRef object points to a CBiostruc_id. The CRef class is
a type of smart pointer used to hold a pointer to a reference-counted object. The dereferencing
operator, when applied to a (dereferenced) iterator pointing to an element of CBiostruc::TId, e.g.
**CRef_i, will return a CBiostruc_id. Thus, the call to GetId() returns a list which must then be
iterated over and dereferenced to get the individual CBiostruc_id objects. In contrast, the func-
tion GetChemicalGraph() returns the object directly, as it does not involve a list or a CRef.

NOTE: It is strongly recommended that you use type names defined in the generated classes
(e.g. TId, TDescr) rather than generic container names (list< CRef<CBiostruc_id> > etc.). The
real container class may change occasionally and you will have to modify the code using generic
container types every time it happens. When iterating over a container it's recommended to use
ITERATE and NON_CONST_ITERATE macros.

The GetXxx() and SetXxx() member functions define the user interface to the class, provid-
ing methods to access and modify ("mutate") private data. In addition, most classes, including
CBiostruc, have IsSetXxx() and ResetXxx() methods to validate and clear the data members,
respectively.

Traversing a Biostruc
The program traverseBS.cpp (see Box 4) demonstrates how one might load a serial data file and
iterate over the components of the resulting object. This example reads from a text ASN.1
Biostruc file and stores the information into a CBiostruc object in memory. The overloaded Visit
() function is then used to recursively examine the object CBiostruc bs and its components.

Visit(bs) simply calls Visit() on each of the CBiostruc data members, which are accessed
using bs.GetXxx(). The information needed to write each of these functions - the data member
types and member function signatures - is contained in the respective header files. For example,
looking at Biostruc_.hpp, we learn that the structure's descriptor list can be accessed using Get-
Descr(), and that the type returned is a list of pointers to descriptors:

typedef list< CRef<CBiostruc_descr> > TDescr;
const TDescr& GetDescr(void) const;

Consulting the base class for CBiostruc_desc in turn, we learn that this class has a choice
state defining the type of value stored there as well as the method that should be used to access
that value. This leads to an implementation of Visit(CBiostruc::TDescr DescrList) that uses an
iterator over its list argument and a switch statement over the current descriptor's choice state.

Iterating Over Containers
Most of the Visit() functions implemented here rely on standard STL iterators to walk through a
list of objects. The general syntax for using an iterator is:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc_.hpp#L65
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc_descr_.hpp#L62

C++ Toolkit Book Data Serialization (ASN

15-55

ContainerType ContainerName;
for (ContainerType::IteratorType
 i = ContainerName.begin(); i != ContainerName.end(); ++i) {

 ObjectType ObjectName = *i;
 // ...
}

Dereferencing the iterator is required, as the iterator behaves like a pointer that traverses
consecutive elements of the container. For example, to iterate over the list of descriptors in the
Biostruc, we use a container of type CBiostruc::TDescr, and an iterator of type const_iterator to
ensure that the data is not mutated in the body of the loop. Because the descriptor list contains
pointers (CRefs) to objects, we will actually need to dereference twice to get to the objects them-
selves.

for (CBiostruc::TDescr::const_iterator i = descList.begin();
 i != descList.end(); ++i) {

 const CBiostruc_descr& thisDescr = **i;
 // ...
}

In traversing the descriptor list in this example, we handled each type of descriptor with an
explicit case statement. In fact, however, we really only visit those descriptors whose types have
string representations: TName, TPdb_comment, and TOther_comment. The other two descrip-
tor types, THistory and TAttribute, are objects that are "visited" recursively, but the associated
visit functions are not actually implemented (see Box 5, traverseBS.hpp).

The NCBI C++ Toolkit provides a rich and powerful set of iterators for various application
needs. An alternative to using the above switch statement to visit elements of the descriptor list
would have been to use an NCBI CStdTypeIterator that only visits strings. For example, we
could implement the Visit function on a CBiostruc::TDescr as follows:

void Visit (const CBiostruc::TDescr& descList)
{
 for (CBiostruc::TDescr::const_iterator i1 = descList.begin();
 i1 != descList.end(); ++i1) {

 for (CStdTypeConstIterator<string> i = ConstBegin(**i1); i; ++i) {
 cout << *i << endl;
 }
 }
}

In this example, the iterator will skip over all but the string data members.
The CStdTypeIterator is one of several iterators which makes use of an object's type infor-

mation to implement the desired functionality. We began this section by positing that the traversal
of an object requires an a priori knowledge of that object's internal structure. This is not strictly
true however, if type information for the object is also available. An object's type information spec-
ifies the class layout, inheritance relations, data member names, and various other attributes

C++ Toolkit Book Data Serialization (ASN

15-56

such as size, which are independent of specific instances. All of the C++ type iterators described
in The NCBI C++ Toolkit Iterators section utilize type information, which is the topic of the next
section: Runtime Object Type Information.

C++ Toolkit Book Data Serialization (ASN

15-57

Box 1: xml2asn.cpp
// File name: xml2asn.cpp
// Description: Reads an XML Biostruc file into memory
// and saves it in ASN.1 text and binary formats.#include <corelib/ncbistd.hpp>
#include <corelib/ncbiapp.hpp>
#include <serial/serial.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <objects/mmdb1/Biostruc.hpp>USING_NCBI_SCOPE;class CTestAsn : public CNcbiApplication {
public:
 virtual int Run ();
};
using namespace objects;int CTestAsn::Run() {
 auto_ptr<CObjectIStream>
 xml_in(CObjectIStream::Open("1001.xml", eSerial_Xml));
 auto_ptr<CObjectOStream>
 txt_out(CObjectOStream::Open("1001.asntxt", eSerial_AsnText));
 auto_ptr<CObjectOStream>
 bin_out(CObjectOStream::Open("1001.asnbin", eSerial_AsnBinary));
 CBiostruc bs;
 *xml_in >> bs;
 *txt_out << bs;
 *bin_out << bs;
 return 0;
}
int main(int argc, const char* argv[])
{
 CNcbiOfstream diag("asntrans.log");
 SetDiagStream(&diag);
 CTestAsn theTestApp;
 return theTestApp.AppMain(argc, argv);
}

C++ Toolkit Book Data Serialization (ASN

15-58

Box 2: ctypeiter.cpp
// File name: ctypeiter.cpp
// Description: Demonstrate using a CTypeIterator
// Notes: build with xncbi and xser libraries#include "ctypeiter.hpp"#include <serial/serial.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <serial/iterator.hpp>
#include <serial/serialimpl.hpp>// type information for class CPersonBEGIN_CLASS_INFO(CPerson){
 ADD_STD_MEMBER(m_Name);
 ADD_STD_MEMBER(m_Addr);
 ADD_MEMBER(m_NextDoor, POINTER, (CLASS, (CPerson)))->SetOptional();
}END_CLASS_INFO// type information for class CDistrictBEGIN_CLASS_INFO(CDistrict){
 ADD_STD_MEMBER(m_Number);
 ADD_MEMBER(m_Blocks, STL_list, (CLASS, (CPerson)));
}END_CLASS_INFO// main and other functionsUSING_NCBI_SCOPE;static void FullerBrushMan (const
CPerson& p) {
 cout << "knock-knock! is " << p.m_Name << " home?" << endl;
}
int main(int argc, char** argv)
{ // Instantiate a few CPerson objects CPerson neighborhood("Moe", "1 Main St",
 new CPerson("Larry", "2 Main St",
 new CPerson("Curly", "3 Main St", 0)));
 CPerson another ("Harpo", "2 River Rd",
 new CPerson("Chico", "4 River Rd",
 new CPerson("Groucho", "6 River Rd", 0)));

 // Create a CDistrict and install some CPerson objects CDistrict district1(1);
 district1.AddBlock(neighborhood);
 district1.AddBlock(another);
 // Send the FullerBrushMan to all CPersons in district1
 for (CTypeConstIterator<CPerson> house = ConstBegin(district1);
 house; ++house) {
 FullerBrushMan(*house);
 }
 // Iterate over all strings for the CPersons in district1
 list<CPerson> blocks = district1.GetBlocks();
 for (list<CPerson>::iterator b = blocks.begin();
 b != blocks.end(); ++b) {
 for (CStdTypeIterator<string> i = Begin(*b); i; ++i) {
 cout << *i << ' ';
 }
 cout << endl;
 }
 return 0;
}

C++ Toolkit Book Data Serialization (ASN

15-59

Box 3: ctypeiter.hpp
// File name: ctypeiter.hpp#ifndef CTYPEITER_HPP
#define CTYPEITER_HPP
#include <corelib/ncbistd.hpp>
#include <corelib/ncbiobj.hpp>
#include <serial/typeinfo.hpp>
#include <string>
#include <list>USING_NCBI_SCOPE;class CPerson
{
public: CPerson(void)
 : m_Name(0), m_Addr(0), m_NextDoor(0)
 {}
 CPerson(string n, string s, CPerson* p)
 : m_Name(n), m_Addr(s), m_NextDoor(p)
 {}
 virtual ~CPerson(void) {}
 static const CTypeInfo* GetTypeInfo(void);
 string m_Name, m_Addr;
 CPerson *m_NextDoor;
};
class CDistrict
{
public: CDistrict(void) : m_Number(0) {}
 CDistrict(int n) : m_Number(n) {}
 virtual ~CDistrict(void) {}
 static const CTypeInfo* GetTypeInfo(void);
 int m_Number;
 void AddBlock (const CPerson& p) { m_Blocks.push_back(p); }
 list<CPerson>& GetBlocks() { return m_Blocks; }
private: list<CPerson> m_Blocks;
};
#endif /* CTYPEITER_HPP */

C++ Toolkit Book Data Serialization (ASN

15-60

Box 4: traverseBS.cpp
// File name: traverseBS.cpp
// Description: Reads an ASN.1 Biostruc text file into memory
// and visits its components#include <serial/serial.hpp>
#include <serial/iterator.hpp>
#include <serial/objistr.hpp>
#include <serial/serial.hpp>
#include <objects/general/Dbtag.hpp>
#include <objects/general/Object_id.hpp>
#include <objects/seq/Numbering.hpp>
#include <objects/seq/Pubdesc.hpp>
#include <objects/seq/Heterogen.hpp>
#include <objects/mmdb1/Biostruc.hpp>
#include <objects/mmdb1/Biostruc_id.hpp>
#include <objects/mmdb1/Biostruc_history.hpp>
#include <objects/mmdb1/Mmdb_id.hpp>
#include <objects/mmdb1/Biostruc_descr.hpp>
#include <objects/mmdb1/Biomol_descr.hpp>
#include <objects/mmdb1/Molecule_graph.hpp>
#include <objects/mmdb1/Inter_residue_bond.hpp>
#include <objects/mmdb1/Residue_graph.hpp>
#include <objects/mmdb3/Biostruc_feature_set.hpp>
#include <objects/mmdb2/Biostruc_model.hpp>
#include <objects/pub/Pub.hpp>
#include <corelib/ncbistre.hpp>
#include "traverseBS.hpp"USING_NCBI_SCOPE;
using namespace objects;int CTestAsn::Run()
{
 // initialize ASN input stream
 auto_ptr<CObjectIStream>
 inObject(CObjectIStream::Open("1001.val", eSerial_AsnBinary));
 // initialize, read into, and traverse CBiostruc object CBiostruc bs;
 *inObject >> bs;
 Visit (bs);

 return 0;
}
/***
*
* The overloaded free "visit" functions are used to explore the
* Biostruc and all its component members - most of which are also
* class objects. Each class has a public interface that provides
* access to its private data via "get" functions.
*
**/void Visit (const CBiostruc&
bs)
{
 cout << "Biostruc:\n" << endl;
 Visit (bs.GetId());
 Visit (bs.GetDescr());
 Visit (bs.GetChemical_graph());

C++ Toolkit Book Data Serialization (ASN

15-61

 Visit (bs.GetFeatures());
 Visit (bs.GetModel());
}

/**
*
* TId is a type defined in the CBiostruc class as a list of CBiostruc_id,
* where each id has a choice state and a value. Depending on the choice
* state, a different get() function is used.
*
***/
void Visit (const CBiostruc::TId& idList)
{
 cout << "\n Visiting Ids of Biostruc:\n";

 for (CBiostruc::TId::const_iterator i = idList.begin();
 i != idList.end(); ++i) {

 // dereference the iterator to get to the id object const CBiostruc_id& thisId =
**i;
 CBiostruc_id::E_Choice choice = thisId.Which();
 cout << "choice = " << choice;

 // select id's get member function depending on choice switch (choice) {
 case CBiostruc_id::e_Mmdb_id:
 cout << " mmdbId: " << thisId.GetMmdb_id().Get() << endl;
 break;
 case CBiostruc_id::e_Local_id:
 cout << " Local Id: " << thisId.GetLocal_id().GetId() << endl;
 break;
 case CBiostruc_id::e_Other_database:
 cout << " Other DB Id: "
 << thisId.GetOther_database().GetDb() << endl;
 break;
 default:
 cout << "Choice not set or unrecognized" << endl;
 }
 }
}

/***
*
* TDescr is also a type defined in the Biostruc class as a list of
* CBiostruc_descr, where each descriptor has a choice state and a value.
*
***/
void Visit (const CBiostruc::TDescr& descList)
{
 cout << "\n Visiting Descriptors of Biostruc:\n";

 for (CBiostruc::TDescr::const_iterator i = descList.begin();
 i != descList.end(); ++i) {

C++ Toolkit Book Data Serialization (ASN

15-62

 // dereference the iterator to get the descriptor const CBiostruc_descr&
thisDescr = **i;
 CBiostruc_descr::E_Choice choice = thisDescr.Which();
 cout << "choice = " << choice;

 // select the get function depending on choice
 switch (choice) {
 case CBiostruc_descr::e_Name:
 cout << " Name: " << thisDescr.GetName() << endl;
 break;
 case CBiostruc_descr::e_Pdb_comment:
 cout << " Pdb comment: " << thisDescr.GetPdb_comment() << endl;
 break;
 case CBiostruc_descr::e_Other_comment:
 cout << " Other comment: " << thisDescr.GetOther_comment() << endl;
 break;
 case CBiostruc_descr::e_History:
 cout << " History: " << endl;
 Visit (thisDescr.GetHistory());
 break;
 case CBiostruc_descr::e_Attribution:
 cout << " Attribute: " << endl;
 Visit (thisDescr.GetAttribution());
 break;
 default:
 cout << "Choice not set or unrecognized" << endl;
 }
 }
 VisitWithIterator (descList);
}
/**
*
* An alternate way to visit the descriptor nodes using a CStdTypeIterator
*
**/void
VisitWithIterator (const CBiostruc::TDescr& descList) {
 cout << "\n Revisiting descriptor list with string iterator...:\n";

 for (CBiostruc::TDescr::const_iterator i1 = descList.begin();
 i1 != descList.end(); ++i1) {

 const CBiostruc_descr& thisDescr = **i1;

 for (CStdTypeConstIterator<NCBI_NS_STD::string>
 i = ConstBegin(thisDescr); i; ++i) {
 cout << "next descriptor" << *i << endl;
 }
 }
}
/**
*
* Chemical graphs contain lists of descriptors, molecule_graphs, bonds, and
* residue graphs. Here we just visit some of the descriptors.

C++ Toolkit Book Data Serialization (ASN

15-63

*
**/void Visit (const
CBiostruc::TChemical_graph& G)
{
 cout << "\n\n Visiting Chemical Graph of Biostruc\n";

 const CBiostruc_graph::TDescr& descList = G.GetDescr();
 for (CBiostruc_graph::TDescr::const_iterator i = descList.begin();
 i != descList.end(); ++i) {

 // dereference the iterator to get the descriptor const CBiomol_descr& thisDescr
= **i;
 CBiomol_descr::E_Choice choice = thisDescr.Which();
 cout << "choice = " << choice;

 // select the get function depending on choice
 switch (choice) {
 case CBiomol_descr::e_Name:
 cout << " Name: " << thisDescr.GetName() << endl;
 break;
 case CBiomol_descr::e_Pdb_class:
 cout << " Pdb class: " << thisDescr.GetPdb_class() << endl;
 break;
 case CBiomol_descr::e_Pdb_source:
 cout << " Pdb Source: " << thisDescr.GetPdb_source() << endl;
 break;
 case CBiomol_descr::e_Pdb_comment:
 cout << " Pdb comment: " << thisDescr.GetPdb_comment() << endl;
 break;
 case CBiomol_descr::e_Other_comment:
 cout << " Other comment: " << thisDescr.GetOther_comment() << endl;
 break;
 case CBiomol_descr::e_Organism: // skipped
 case CBiomol_descr::e_Attribution:
 break;
 case CBiomol_descr::e_Assembly_type:
 cout << " Assembly Type: " << thisDescr.GetAssembly_type() << endl;
 break;
 case CBiomol_descr::e_Molecule_type:
 cout << " Molecule Type: " << thisDescr.GetMolecule_type() << endl;
 break;
 default:
 cout << "Choice not set or unrecognized" << endl;
 }
 }
}
void Visit (const CBiostruc::TFeatures&)
{
 cout << "\n\n Visiting Features of Biostruc\n";
}
void Visit (const CBiostruc::TModel&)
{

C++ Toolkit Book Data Serialization (ASN

15-64

 cout << "\n\n Visiting Models of Biostruc\n";
}
int main(int argc, const char* argv[])
{
 // initialize diagnostic stream CNcbiOfstream diag("traverseBS.log");
 SetDiagStream(&diag);

 CTestAsn theTestApp;
 return theTestApp.AppMain(argc, argv);
}

C++ Toolkit Book Data Serialization (ASN

15-65

Box 5: traverseBS.hpp
// File name traverseBS.hpp#ifndef NCBI_TRAVERSEBS__HPP
#define NCBI_TRAVERSEBS__HPP
#include <corelib/ncbistd.hpp>
#include <corelib/ncbiapp.hpp>
USING_NCBI_SCOPE;
using namespace objects;// class CTestAsn
class CTestAsn : public CNcbiApplication {
public:
 virtual int Run ();
};
void Visit(const CBiostruc&);
void Visit(const CBiostruc::TId&);
void Visit(const CBiostruc::TDescr&);
void Visit(const CBiostruc::TChemical_graph&);
void Visit(const CBiostruc::TFeatures&);
void Visit(const CBiostruc::TModel&);
void Visit(const CBiostruc_history&) {
 cout << "visiting history" << endl;
};
// Not implemented
void Visit(const CBiostruc_descr::TAttribution&) {};
void VisitWithIterator (const CBiostruc::TDescr& descList);
#endif /* NCBI_TRAVERSEBS__HPP */

